Задачи и лабораторные работы по сопротивлению материалов

Математика
Контрольная работа по математике
Примеры решения типовых задач
Вычислим интеграл
Задачи на интеграл
Свойства неопределённого интеграла
Физика задачи
Законы геометрической оптики
Точечный источник волн
Фокусное расстояние линзы
Дифракционная решетка
Оптическая пирометрия

Квантовая физика

Курс лекций по ядерным реакторам
Физика лабораторные работы
Закон преломления света
Дисперсия и поглощение света
Дифракционная решетка
Примеры задач по физике
Лабораторные работы задачи
по электротехнике
Ядерная физика
Ядерная физика лекции
Электрические цепи
Магнитное поле и магнитные цепи
Волоконно-оптические приборы
Электронные усилители
Инженерка
История искусства
Сопромат
Начертательная геометрия
Типовые задачи по начерталке
Черчение
Художники, меценаты
Инженерная графика примеры
Информатика
Информационно-вычислительные
системы и сети

Задачи по сопротивлению материалов

В сопротивлении материалов рассматриваются вопросы расчета отдельных элементов конструкций на прочность, жесткость и устойчивость. В настоящем разделе собраны типичные задачи по различным видам простого и сложного сопротивления отдельного бруса.

Построение эпюр нормальных сил и напряжений для брусьев в статически определимых задачах Задача Построить эпюры нормальных сил и нормальных напряжений для бруса, изображенного на рис. 1.1.1. Собственный вес бруса в расчете не учитывать.

Задача Построить эпюры нормальных сил и нормальных напряжений для бруса постоянного поперечного сечения с А = 10 см2. На брус действует внешняя распределенная осевая нагрузка q = 5 кН/м и продольные сосредоточенные силы F= 15 кН

Перемещения поперечных сечений брусьев в статически определимых задачах Задача Определить перемещение нижнего конца стержня, изображенного на рис. 1.1.1, а. Задачу решить без учета собственного веса материала бруса.

Расчеты на растяжение и сжатие статически определимых стержневых систем Задача Абсолютно жесткий брус ВС (ЕВС = ) прикреплен в точке С к неподвижному шарниру, а в точке В поддерживается стальной тягой АВ. В точке В приложена вертикальная сила F = 20 кН.

Построение эпюр нормальных сил и напряжений для брусьев в статически неопределимых задачах Статически неопределимыми системами называются системы, для которых реакции связей и внутренние усилия не могут быть определены только из уравнений равновесия. Поэтому при их расчете необходимо составлять дополнительные уравнения перемещений, учитывающие характер деформации системы. Число дополнительных уравнений, необходимых для расчета системы, характеризует степень ее статической неопределимости.

Расчеты на растяжение и сжатие статически неопределимых стержневых систем Задача (Пример взят из учебника А.В. Даркова, Г.С. Шпиро «Сопротивление материалов». – М.: «Высшая школа», 1975. – Изд.4-е. – 656с.). Дана статически неопределимая плоская шарнирно - стержневая система, состоящая из абсолютно жесткого бруса, опертого на шарнирную опору и прикрепленного к двум стержням ВВ1 и СС1 при помощи шарниров.

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕКРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

 Геометрическими характеристиками плоских сечений являются площадь, статические моменты плоских сечений, положение центра тяжести, моменты инерции и моменты сопротивления. Статические моменты сечений и определение центра тяжести плоских сечений

Осевые моменты инерции плоских сечений простой формы Задача. Определить полярный момент инерции круглого поперечного сечения относительно точки С.

Осевые моменты инерции плоских составных сечений Для сложных составных поперечных сечений, не содержащих осей симметрии, предлагается следующий порядок расчета.

 Сдвигом называют деформацию, представляющую собой искажение первоначально прямого угла малого элемента бруса (рис.3.1.1) под действием касательных напряжений τ. Развитие этой деформации приводит к разрушению, называемому срезом или, применительно к древесине, скалыванием.

Дополнительные задачи на сдвиг Задачи на сдвиг встречаются не только при расчете заклепочных и болтовых соединений. Имеются и другие элементы конструкций, испытывающие деформацию сдвига, и поэтому при их расчете необходимо всякий раз удовлетворять условию прочности на срез

Расчет напряжений и деформаций валов

Расчеты на прочность и жесткость валов круглого и кольцевого сечений При расчете валов требуют, чтобы они удовлетворяли условиям прочности и жесткости.

Статически неопределимые задачи на кручение

Как известно, статически неопределимыми называют задачи, в которых число неизвестных опорных реакций или число внутренних усилий превышает число возможных уравнений статики. Один из методов решения статически неопределимых задач сводится к следующему:

а) составляются все возможные в данной задаче уравнения статики;

б) представляется картина деформации, происходящей в данной конструкции, и записываются деформационные уравнения, число которых должно быть равно степени статической неопределимости задачи;

в) решается совместная система уравнений статики и деформационных уравнений.

Расчет винтовых пружин с малым шагом Приведем основные сведения по элементарной теории расчета на прочность и жесткость витых цилиндрических пружин с постоянным и малым шагом витка l, при котором угол наклона витка к горизонту мал

ПЛОСКИЙ ПОПЕРЕЧНЫЙ ИЗГИБ Изгиб представляет собой такую деформацию, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса. Изгиб называют чистым, если изгибающий момент является единственным внутренним усилием, возникающим в поперечном сечении бруса (балки). Изгиб называют поперечным, если в поперечных сечениях бруса наряду с изгибающими моментами возникают также и поперечные силы. Если плоскость действия изгибающего момента проходит через одну из главных центральных осей поперечного сечения, то изгиб носит название плоского или прямого.

Эпюры главных напряжений при изгибе В каждой точке напряженного тела существуют три взаимно перпендикулярные площадки, на которых касательные напряжения равны нулю.

Дифференциальное уравнение изгиба балок

Расчет балок на жесткость

Определение перемещений при помощи интеграла Мора

Простейшие статически неопределимые балки Статически неопределимой балкой называется такая балка, для определения опорных реакций которой недостаточно одних только уравнений равновесия.

Сварная балка

Сложным сопротивлением называют различные комбинации простых сопротивлений бруса – растяжения или сжатия, сдвига, кручения и изгиба. При этом на основании известного принципа независимости действия сил напряжения и деформации при сложном сопротивлении определяют суммированием напряжений и деформаций, вызванных каждым внутренним усилием, взятым в отдельности.

Внецентренное растяжение и сжатие бруса большой  жесткости. Ядро сечения Жестким брусом называют брус, у которого прогибы малы по сравнению с размерами сечений и этими прогибами можно в расчете пренебречь. Внецентренное растяжение или сжатие возникает при приложении к брусу продольной силы с некоторым эксцентриситетом относительно центра тяжести поперечного сечения

Совместное действие изгиба и кручения Для выявления опасного сечения при совместном действии изгиба и кручения строятся эпюры крутящих и изгибающих моментов по правилам глав 3 и 4. Вопрос о прочности стержня в этом случае решается с помощью тех или иных критериев прочности.

Расчет кривых брусьев малой кривизны Если отношение высоты h кривого бруса к его радиусу кривизны Ro существенно меньше единицы (h/Ro < 0,2 ), то считается, что брус имеет малую кривизну. Расчетные формулы, выведенные ранее для прямого бруса, применимы и к брусу малой кривизны.

УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ Наименьшее значение сжимающей силы, при котором сжатый стержень теряет способность сохранять прямолинейную форму равновесия, называется критической силой и обозначается Fcr.

Практические расчеты стержней на устойчивость

Расчет на устойчивость систем с одной или двумя степенями свободы при помощи уравнений равновесия

ДЕЙСТВИЕ ДИНАМИЧЕСКИХ НАГРУЗОК Динамической считается такая нагрузка, положение, направление и интенсивность которой зависят от времени, так что необходимо учитывать силы инерции тела в результате ее действия. При этом конструкции или их элементы совершают движения, простейшим видом которых являются колебания. Из различных задач динамики конструкций здесь рассматриваются задачи на действие инерционных и ударных нагрузок, а также задачи на упругие свободные колебания систем с одной степенью свободы.

Упругие колебания систем с одной степенью свободы Упругими колебаниями называют движения упругих тел, представляющие собой периодические отклонения их относительно положения равновесия.

НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ В предыдущих главах использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной точке не превосходило допускаемого напряжения (расчетного сопротивления).

Предельная нагрузка для балок Напряженное состояние изгибаемых конструкций (балок) определяется величинами изгибающих моментов.

Предельная нагрузка при кручении Предельным состоянием для идеально пластического материала будет такое, при котором касательные напряжения во всех точках поперечного сечения станут равными пределу текучести

ПРИМЕНЕНИЕ ЭВМ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

 Введенные во всех высших и средних технических учебных заведениях новые учебные планы и программы создают необходимые объективные условия для широкого использования ЭВМ. Рациональность использования ЭВМ особо ощутима при расчете статически неопределимых систем. Однако и при расчете некоторых статически определимых систем могут быть использованы ЭВМ. Это в первую очередь относится к таким задачам, решение которых состоит из большого числа аналогичных последовательных операций. Вычисление моментов инерции плоских составных сечений

Задача 9.1.1. Найти координаты центра тяжести и вычислить главные моменты инерции для составного сечения

Аналитический расчет кривых брусьев малой кривизны

ЛАБОРАТОРНЫЕ РАБОТЫ ПО СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

Лабораторный практикум является неотъемлемой и существенной составной частью учебного процесса по изучению сопротивления материалов

Определение модуля продольной упругости и коэффициента Пуассона Целью работы является опытная проверка закона Гука при растяжении, определение модуля продольной упругости Е и коэффициента Пуассона ν стали и ознакомление с устройством и работой тензометров.

Испытание на сжатие образцов из пластичных и хрупких материалов Целью работы является определение пределов прочности и изучение характера разрушения образцов металла, цемента и дерева при сжатии.

Испытание материалов на сдвиг Целью работы является определение предела прочности на срез для металлов (сталь, дюралюминий) и предела прочности на скалывание и срез для дерева.

Испытание на кручение с определением модуля сдвига Цель работы – проверить справедливость закона Гука при кручении, определить величину модуля сдвига стали, исследовать характер деформаций при кручении и установить величины разрушающих напряжений при скручивании образцов из различных материалов.

Данный цикл составляют работы, посвященные проверке теоретических формул для расчета напряжений и перемещений сечений в образцах при прямом изгибе, внецентренном растяжении или сжатии, изгибе с кручением и при продольном изгибе стержня. Исследование нормальных напряжений в сечениях балки при прямом изгибе

Опытная проверка теории косого изгиба Целью работы является проверка теоретических формул для расчета напряжений и перемещений при косом изгибе.

Опытная проверка теории внецентренного растяжения (сжатия) Цель работы – опытное определение величин нормальных напряжений при внецентренном растяжении или сжатии стержня и сравнение их с расчетными значениями.

Испытание стальных образцов на продольный изгиб Цель работы – демонстрация явления потери устойчивости формы стержней; определение величин критических сил при продольном изгибе стержней различных размеров с разным способом закрепления концов и сопоставление установленных в опыте величин критических сил с их значениями, рассчитанными по соответствующим формулам сопротивления материалов.

Испытание стальной трубы на изгиб с кручением Целью работы является проверка экспериментальным путем теоретических формул для расчета главных напряжений и положения главных площадок при изгибе с кручением стальной трубы, а также знакомство с электрическим методом измерения деформаций.

Примеры задач по физике, математике