Дилер рено копейск подробно.
Сети
Сопромат
Контрольная
Физика
Оптика
Лабораторные
Геометрия
Примеры
Энерго
Электротехника
Черчение
Задачи
АЭС
Математика
Инженерка
Графика

Примеры решения задач по физике

Задачи

Момент инерции

3.1. Определить момент инерции J материальной точки массой m=0,3 кг относительно оси, отстоящей от точки на r=20 см.

3.2. Два маленьких шарика массой m=10 г каждый скреплены тонким невесомым стержнем длиной l=20 см. Определить момент инерции J системы относительно оси, перпендикулярной стержню и проходящей через центр масс.

Рис. 3.8

3.3. Два шара массами m и 2m (m=10 г) закреплены на тонком невесомом стержне длиной l=40 см так, как это указано на рис. 3.7, а, б. Определить моменты инерции J системы относительно оси, перпендикулярной стержню и проходящей через его конец в этих двух случаях. Размерами шаров пренебречь. Физика атомного ядра и элементарных частиц Атомное ядро Состав и основные характеристики атомного ядра Атомные ядра различных элементов состоят из двух частиц – протонов и нейтронов. Сразу же после открытия нейтрона (Дж. Чедвик, 1932 г.), Д.Д. Иваненко и В. Гейзенберг выдвинули гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями. Протоны и нейтроны принято называть нуклонами.

Рис. 3.7

3.4. Три маленьких шарика массой m=10 г каждый расположены в вершинах равностороннего треугольника со стороной а= =20 см и скреплены между собой. Определить момент инерции системы относительно оси: 1) перпендикулярной плоскости треугольника и проходящей через центр описанной окружности; 2) лежащей в плоскости треугольника и проходящей через центр описанной окружности и одну из вершин треугольника. Массой стержней, соединяющих шары, пренебречь.

3.5. Определить моменты инерции  трехатомных молекул типа АВ2 относительно осей х, у, (рис. 3.8), проходящих через центр инерции С молекулы (ось перпендикулярна плоскости ху). Межъядерное расстояние А В обозначено d, валентный угол а. Вычисления выполнить для следующих молекул: 1) H2O (d= 0,097 нм,= 104°30'); 2) SO2(d=0,145нм=124°). 3.6.Определить момент инерции тонкого однородного стержня длиной l=30 см и массой m=100 г относительно оси, перпендикулярной стержню и проходящей через: 1) его конец; 2) его середину; 3) точку, отстоящую от конца стержня на 1/3 его длины.

3.7. Определить момент инерции J тонкого однородного стержня длиной l=60 см и массой m=100 г относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на а=20 см от одного из его концов.

3.8. Вычислить момент инерции J проволочного прямоугольника со сторонами а=12 см и b=16 см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по длине проволоки с линей ной плотностью τ=0,1 кг/м.

magniflex ортопедические матрасы

3.9. Два однородных тонких стержня: АВ длиной l1=40 см • и массой m1=900 г и CD длиной l2=40 см и массой l2=400 г скреплены под прямым углом (рис. 3.9). Определить момент инерции J системы стержней относительно оси 00', проходящей через конец стержня АВ параллельно стержню CD.

Рис. 3.9

Рис. 3.10

3.10. Решить предыдущую задачу для случая, когда ось 00' проходит через точку А перпендикулярно плоскости чертежа.

3.11. Определить момент инерции J проволочного равностороннего треугольника со стороной а=10 см относительно: 1) оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине (рис. 3.10, а); 2) оси, совпадающей с одной из сторон треугольника (рис. 3.10, б). Масса т треугольника равна 12 г и равномерно распределена по длине проволоки.

3.12. На концах тонкого однородного стержня длиной l и массой 3m прикреплены маленькие шарики массами m и 2m. Определить момент инерции J такой системы относительно оси, перпендикулярной стер и проходящей через точку О, лежащую на оси стержня. Вычисления выполнить для случаев а, б, в, г, д, изображенных на рис. 3.11. При расчетах принять l=1 м, m=0,1 кг. Шарики рассматривать как материальные точки.

3.13. Найти момент инерции J тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр.

Основное уравнение динамики вращательного движения

3.19. Тонкий однородный стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку О на стержне (рис. 3.13). Стержень отклонили от вертикали на угол а и отпустили. Определить для начального момента времени угловое в и тангенциальное аt ускорения точки В на стержне. Вычисления произвести для следующих случаев:

3.25. Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m1=100 г и т2=110 г. С каким ускорением а будут двигаться грузики, если масса т блока равна 400 г? Трение при вращении блока ничтожно мало.

3:26. Два тела массами т1=0,25 кг и m2=0,15 кг связаны тон, кой нитью, переброшенной через блок (рис. 3.15). Блок укреплен на краю горизонтального стола, по поверхности которого скользит тело массой т1. С каким ускорением а движутся тела и каковы силы T1 и Т2 натяжения нити по обе. стороны от блока? Коэффициент трения f тела о поверхность стола равен 0,2. Масса т блока равна 0,1 кг и ее можно считать равномерно распределенной по ободу. Массой нити и трением в подшипниках оси блока пренебречь.

3.31. Человек стоит на скамье Жуковского и ловит рукой мяч массой т=0,4 кг, летящий в горизонтальном направлении со скоростью υ=20 м/с. Траектория мяча проходит на расстоянии r =0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью w начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг-м2?

3.41. Якорь мотора вращается с частотой n=1500 мин-1. Определить вращающий момент М, если мотор развивает мощность N=500 Вт.

3.42. Со шкива диаметром d=0,48 м через ремень передается мощность N=9 кВт. Шкив вращается с частотой и=240 мин-1. Сила натяжения T1 ведущей ветви ремня в два раза больше силы натяжения Т2 ведомой ветви. Найти силы натяжения обеих ветвей ремня.

3.43. Для определения мощности мотора на его шкив диаметром d=20 см накинули ленту. К одному концу ленты прикреплен динамометр, к другому подвесили груз Р.Найти мощность N мотора, если мотор вращается с частотой n=24 с-1, масса т груза равна 1 кг и показание динамометра F=24 Н.

Пример 13.  Определить начальную активность a0 радиоактивного магния 12Mg27  массой  m = 0,20 мг, а  также активность а по истечении времени t = 1,0 ч.

Дано: m = 0,20 мг = 0,20 ·10-6 кг; t = 1,0 ч = 3,6 ·103 с.

Найти: a0, а.

Решение. Как известно, начальная активность изотопа определяется по формуле:

,

а постоянная радиоактивного распада:

(1)

Поэтому

Так как начальное количество ядер радиоактивного изотопа

=,

следовательно,

Произведем расчет начальной активности, используя табличные данные из Приложения для периода полураспада Т1/2, молярной массы μ радиоактивного изотопа  12Мg27 и для числа Авогадро NА:

.

Активность изотопа уменьшается со временем по закону:

 

или, учитывая формулу (1)

 

Так как , окончательно получим

 

Произведем расчет активности в указанный в условии момент времени, используя найденное ранее значение начальной активности а0:

 

 

Ответ: а0 = 5,2·1015 Бк; а = 8,0·1013 Бк.


Дилер рено копейск подробно.

Атомные станции