Сети
Сопромат
Контрольная
Физика
Оптика
Лабораторные
Геометрия
Примеры
Энерго
Электротехника
Черчение
Задачи
АЭС
Математика
Инженерка
Графика

Примеры решения задач по физике

Второй закон Ньютона

2.1. На гладком столе лежит брусок массой m=4 кг. К бруску привязан шнур, ко второму концу которого приложена сила F=10 Н, направленная параллельно поверхности стола. Найти ускорение а бруска.

2.2. На столе стоит тележка массой m1=4 кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением a будет двигаться тележка, если к другому концу шнура привязать гирю массой m2=1 кг?

2.3. К пружинным весам подвешен блок. Через блок перекинут шнур, к концам которого привязали грузы массами m1=l,5 кг и m2=3 кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь.

2.4. Два бруска массами m1=l кг и m2=4 кг, соединенные шнуром, лежат на столе. С каким ускорением а будут двигаться бруски, если к одному из них приложить силу F=10 H, направленную горизонтально? Какова будет сила натяжения Т шнура, соединяющего бруски, если силу F=10 Н приложить к первому бруску? ко второму бруску? Трением пренебречь.

2.5. На гладком столе лежит брусок массой т=4 кг. К бруску привязаны два шнура, перекинутые через неподвижные блоки, прикрепленные к противоположным краям стола. К концам шнуров подвешены гири, массы которых т1=1 кг и т2=2 кг. Найти ускорение а, с которым движется брусок, и силу натяжения Т каждого из шнуров. Массой блоков и трением пренебречь.

2.6. Наклонная плоскость, образующая угол =25° с плоскостью горизонта, имеет длину l=2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время t=2 с. Определить коэффициент трения f тела о плоскость.

2.7. Материальная точка массой т=2 кг движется под действием некоторой силы F согласно уравнению x=A+Bt+Ct2+Dt3, где С=1 м/с2, D=—0,2 м/с3. Найти значения этой силы в моменты времени t1=2 с и t2=5 с. В какой момент времени сила равна нулю?

2.8. Молот массой m=1 т падает с высоты h=2 м на наковальню. Длительность удара t=0,01 с. Определить среднее значение силы <F> удара.

2.9. Шайба, пущенная по поверхности льда с начальной скоростью v0=20 м/с, остановилась через t=40 с. Найти коэффициент трения f шайбы о лед.

2.10. Материальная точка массой т=1 кг, двигаясь равномерно, описывает четверть окружности радиусом r= 1,2 м в течение времени t=2 с. Найти изменение ? импульса точки.

2.11. Тело массой m=5 кг брошено под углом =30° к горизонту с начальной скоростью v0=20 м/с. Пренебрегая сопротивлением воздуха, найти: 1) импульс силы F, действующей на тело, за время его полета; 2) изменение ? импульса тела за время полета.

2.12. Шарик массой m=100 г упал с высоты h=2,5 м на горизонтальную плиту, масса которой много больше массы шарика, и отскочил от нее вверх. Считая удар абсолютно упругим, определить импульс р, полученный плитой.

2.13. Шарик массой m=300 г ударился о стену и отскочил от нее. Определить импульс p1, полученный стеной, если в последний момент перед ударом шарик имел скорость v0=10 м/с, направленную под углом =30° к поверхности стены. Удар считать абсолютно упругим.

2.14. Тело массой т=0,2 кг соскальзывает без трения по желобу высотой h==2 м. Начальная скорость v0 шарика равна нулю. Найти изменение  импульса шарика и импульс р, полученный желобом при движении тела.2.15. Ракета массой m=1 т, запущенная с поверхности Земли вертикально вверх, поднимается с ускорением a=2g. Скорость v струи газов, вырывающихся из сопла, равна 1200 м/с. Найти расход Qm горючего.

2.16. Космический корабль имеет массу т=3,5 т. При маневрировании из его двигателей вырывается струя газов со скоростью v=800 м/с; расход горючего Qm=0,2 кг/с. Найти реактивную силу R двигателей и ускорение а, которое она сообщает кораблю.

2.17. Вертолет массой m=3,5 т с ротором, диаметр d которого равен 18 м, «висит» в воздухе. С какой скоростью v ротор отбрасывает вертикально вниз струю воздуха? Диаметр струи считать равным диаметру ротора.

2.18. Брусок массой m2=5 кг может свободно скользить по горизонтальной поверхности без трения. На нем находится другой брусок массой т1=1 кг. Коэффициент трения соприкасающихся поверхностей брусков f=0,3. Определить максимальное значение силы Fmах приложенной к нижнему бруску, при которой начнется соскальзывание верхнего бруска.

2.19. На горизонтальной поверхности находится бросок массой m1=2 кг. Коэффициент трения f1 бруска о поверхность равен 0,2. На бруске находится другой брусок массой m2=8 кг. Коэффициент трения f2 верхнего бруска о нижний равен 0,3. К верхнему бруску приложена сила F. Определить: 1) значение силы F1, при котором начнется совместное скольжение брусков по поверхности; 2) значение силы F2, при котором верхний брусок начнет проскальзывать относительно нижнего.

2.20. Ракета, масса которой М=6 т, поднимается вертикально вверх. Двигатель ракеты развивает силу тяги F=500 кН. Определить ускорение а ракеты и силу натяжения Т троса, свободно свисающего с ракеты, на расстоянии, равном 1/4 его длины от точки прикрепления троса. Масса т троса равна 10 кг. Силой сопротивления воздуха пренебречь.

Закон сохранения импульса

2.34. Шар массой m=10 кг, движущийся со скоростью v1=4 м/с, сталкивается с шаром массой m=4 кг, скорость v2 которого равна 12 м/с. Считая удар прямым, неупругим, найти скорость и шаров после удара в двух случаях: 1) малый шар нагоняет большой шар, движущийся в том же направлении; 2) шары движутся навстречу друг другу.

2.35. В лодке массой m1=240 кг стоит человек массой m2=60 кг. Лодка плывет со скоростью v1=2 м/с. Человек прыгает с лодки в горизонтальном направлении со скоростью v=4 м/с (относительно лодки). Найти скорость и движения лодки после прыжка человека в двух случаях: 1) человек прыгает вперед по движению лодки и 2) в сторону, противоположную движению лодки.

2.48. При насадке маховика на ось центр тяжести оказался на расстоянии r=0,1 мм от оси вращения. В каких пределах меняется сила F давления оси на подшипники, если частота вращения маховика n= 10 с1? Масса т маховика равна 100 кг.

2.49. Мотоцикл едет по внутренней поверхности вертикального цилиндра радиусом R=11,2 м. Центр тяжести мотоцикла с человеком расположен на расстоянии l=0,8 м от поверхности цилиндра. Коэффициент трения f покрышек о поверхность цилиндра равен 0,6. С какой минимальной скоростью vmin должен ехать мотоциклист? Каков будет при этом угол  наклона его к плоскости горизонта?

2.50. Автомобиль массой m=5 т движется со скоростью v=10 м/с по выпуклому мосту. Определить силу F давления автомобиля на мост в его верхней части, если радиус R кривизны моста равен 50 м.

Пример 2.На стеклянный клин (nст = 1,5) с малым углом нормально к его грани падает параллельный пучок лучей монохроматического света с длиной волны l = 0,6 мкм. Число m возникающих при этом интерференционных полос, приходящихся на 1 см, равно 10. Наблюдение ведется в отраженном свете. Определить угол a клина.

Решение

Интерферировать будут волны 1 и 2,отраженные соответственно от верхней и нижней грани клина. Интерференционная картина наблюдается вблизи поверхности клина.

Пусть произвольной темной интерференционной полосе k-ого номера соответствует толщина bk клина, а темной интерференционной полосе k+m-ого номера—толщина bk+m клина. Разность хода D двух волн, образующих интерференционную полосу, складывается из разности оптических длин путей этих волн и добавочной разности хода , которая возникает при отражении волны 1 от оптически более плотной среды.

Темные полосы видны на тех участках клина, для которых разность хода волн удовлетворяет условию минимума, т. е.:

После упрощения получим для k-той полосы

Соответственно для k+m-ой полосы

Из рисунка видно, что

Выразив из предыдущих равенств  и , получим:

Учитывая, что угол мал , получим:

Подставляя числовые значения физических величин, найдем

.


Атомные станции