Свойства диэлектриков Электрический момент диполя

Примеры решения задач по физике

Задачи

Потенциальная энергия и потенциал поля точечных зарядов

15.1. Точечный заряд Q = 10 нКл, находясь в некоторой точке поля, обладает потенциальной энергией П = 10 мкДж. Найти потенциал φ этой точки поля.

5.2. При перемещении заряда Q=20 нКл между двумя точками поля внешними силами была совершена работа А=4 мкДж. Определить работу A1 сил поля и разность Δφ потенциалов этих точек поля.

15.3. Электрическое поле создано точечным положительным зарядом Q1=6 нКл. Положительный заряд Q2 переносится из точки А этого поля в точку В (рис. 15.5). Каково изменение потенциальной энергии ΔП, приходящееся на единицу переносимого заряда, если r1=20 см и r2=50 см?

15.4. Электрическое поле создано точечным зарядом Ql=50 нКл. Не пользуясь понятием потенциала, вычислить работу А

внешних сил по перемещению точечного заряда Q2= -2 нКл из точки С в точку В Силы инерции Основным положением механики Ньютона

(рис. 15.6), если r1=10 см, r2=20 см. Определить также изменение ΔП потенциальной энергии системы зарядов.

15.5. Поле создано точечным зарядом Q=1 нКл. Определить потенциал φ поля в точке, удаленной от заряда на расстояние r=20 см.

15.6. Определить потенциал φ электрического поля в точке, ,удаленной от зарядов Q1= -0,2 мкКл и Q2=0,5 мкКл соответственно на r1=15 см и r2=25 см. Определить также минимальное и максимальное расстояния между зарядами, при которых возможно решение.

15.7. Заряды Q1=1 мкКл и Q2= -1 мкКл находятся на расстоянии d=10 см. Определить напряженность Е и потенциал φ поля в точке, удаленной на расстояние r= 10 см от первого заряда и лежащей на линии, проходящей через первый заряд перпендикулярно направлению от Q1 к Q2.

15.8. Вычислить потенциальную энергию П системы двух точечных зарядов Q1=100 нКл и Q2=10 нКл, находящихся на расстоянии d=10 см друг от друга.

15.9. Найти потенциальную энергию П системы трех точечных зарядов Q1=10 нКл, Q2=20 нКл и Q3= -30 нКл, расположенных в вершинах равностороннего треугольника со стороной длиной a=10 см.

15.10. Какова потенциальная энергия П системы четырех одинаковых точечных зарядов Q=10 нКл, расположенных в вершинах квадрата со стороной длиной а=10 см? .

15.11. Определить потенциальную энергию П системы четырех точечных зарядов, расположенных в вершинах квадрата со стороной длиной a=10 см. Заряды одинаковы по модулю Q=10 нКл,но два из них отрицательны. Рассмотреть два возможных случая расположения зарядов.

 15.12. Поле создано двумя точечными зарядами +2Q и -Q, находящимися на расстоянии d=12 см друг от друга. Определить геометрическое место точек на плоскости, для которых потенциал равен нулю (написать уравнение линии нулевого потенциала).

5.13. Система состоит из трех зарядов - двух одинаковых по величине Q1=|Q2|=1 мкКл и противоположных по знаку и заряда Q=20 нКл, расположенного точке 1 посередине между двумя другими зарядами системы (рис. 15.7). Определить изменение потенциальной энергии ΔП системы при переносе заряда Q из точки 1 в точку 2. Эти точки удалены от отрицательного заряда Q1 на расстояние а=0,2 м.

Потенциал поля линейно распределенных зарядов

15.14. По тонкому кольцу радиусом R=10 см равномерно распределен заряд с линейной плотностью τ= 10 нКл/м. Определить потенциал φ в точке, лежащей на оси кольца, на расстоянии а=5 см от центра.

15.17. Тонкие стержни образуют квадрат со стороной длиной а. Стержни заряжены с линейной плотностью τ= 1,33 нКл/м. Найти потенциал φ в центре квадрата.

15.18. Бесконечно длинная тонкая прямая нить несет равномерно распределенный по длине нити заряд с линейной плотностью τ=0,01 мкКл/м. Определить разность потенциалов Δφ двух точек поля, удаленных от нити на r1=2 СМ и r2==4 см.

Градиент потенциала и его связь с напряженностью поля

15.35. Бесконечная плоскость равномерно заряжена с поверхностной плотностью σ=4 нКл/м2. Определить значение и направление градиента потенциала электрического поля, созданного этой плоскостью.

15.36. Напряженность Е однородного электрического поля в некоторой точке равна 600 В/м. Вычислить разн0cть потенциалов U между этой точкой и другой, лежащей на прямой составляющей угол α=60º с направлением вектора напряженности. Расстояние, между точками равно 2 мм.

15.37. Напряженность Е однородного электрического поля равна 120 В/м. Определить разность потенциалов U между этой точкой и другой, лежащей на той же силовой линии и отстоящей от первой на Δr=1 мм.

15.38. Электрическое поле создано положительным точечным зарядом. Потенциал поля в точке, удаленной от заряда на r=12 см, равен 24 В. Определить значение и направление градиента потенциала в этой точке.

Движение заряженных частиц в электрическом поле

15.51. Электрон находится в однородном электрическом поле напряженностью Е=200 кВ/м. Какой путь пройдет электрон за время t= 1 нс, если его начальная скорость была равна нулю? Какой скоростью будет обладать электрон в конце этого интервала времени?

15.52. Какая ускоряющая разность потенциалов U требуется для того, чтобы сообщить скорость ν=30 Мм/с: 1) электрону; 2) протону?

15.53. Разность потенциалов U между катодом и анодом электронной лампы равна 90 В, расстояние r = 1 мм. С каким ускорением а движется электрон от катода к аноду? Какова скорость ν электрона в момент удара об анод? За какое время t электрон пролетает расстояние от катода до анода? Поле считать однородным.

15.54. Пылинка массой т= 1 пг, несущая на себе пять электронов, прошла в вакууме ускоряющую разность потенциалов U=3 МВ. Какова кинетическая энергия Т пылинки? Какую скорость ν приобрела пылинка?

Пример 3. Кинетическая энергия электрона в атоме водорода составляет величину порядка T = 10 эВ. Используя соотношение неопределённостей, оценить минимальные линейные размеры атома.

Решение. Соотношение неопределённостей для координаты и импульса имеет вид

Dx×Dpx ³ ћ,             (1)

где Dx - неопределённость координаты x электрона; Dpx - неопределённость проекции импульса электрона на ось X; ħ - постоянная Планка, делённая на 2p.

Из соотношения неопределённостей следует, что чем точнее определяется положение частицы в пространстве, тем более неопределённым становится соответствующая проекция импульса, а следовательно, и энергия частицы. Пусть атом имеет линейные размеры l, тогда электрон атома будет находиться где-то в пределах области с неопределённостью

Dx = l/2.

Соотношение неопределённостей (1) можно записать в том случае в виде

(l/2)Dpx ³ ħ,

откуда

l ³ 2ħ/Dpx.                          (2)

Физически разумная неопределённость импульса Dpx во всяком случае не должна превышать значения самого импульса px, то есть Dpx £ px. Импульс px связан с кинетической энергией T соотношением px = (2mT)1/2. Переходя от неравенства к равенству, получим

.          (3)

Произведём вычисления:

lmin = 2×1,05×10-34/(2×9,1×10-31×1,6×10-19×10)1/2 = 124 нм.


Электрическая емкость решение задач