Закон Кулона Напряженность поля точечных зарядов

Примеры решения задач по физике

Электростатика

Закон Кулона. Взаимодействие заряженных частиц

Основные формулы

· Закон Кулона

,

где F — сила взаимодействия двух точечных зарядов Q1, и Q2; r — расстояние между зарядами; e — диэлектрическая проницаемость среды; e0 — электрическая постоянная:

.

Раскрутка сайта недорого смотрите на www.seonester.ru .

Закон сохранения заряда

,

где  — алгебраическая сумма зарядов, входящих в изолированную систему; n — число зарядов. Законы Ньютона образуют основу динамики — раздела механики, рассматривающего взаимодействие тел.

Примеры решения задач

Пример 1. Три одинаковых положительных заряда Q1=Q2=Q3=1 нКл расположены по вершинам равностороннего треугольника (рис. 13.1). Какой отрицательный заряд Q4 нужно поместить в центре треугольника, чтобы сила притяжения с его стороны уравновесила силы взаимного отталкивания зарядов, находящихся в вершинах?

Решение. Все три заряда, расположенных по вершинам треугольника, находятся в одинаковых условиях. Поэтому для решения задачи достаточно выяснить, какой заряд следует поместить в центре треугольника, чтобы один из трех зарядов, например Q1,

находился в равновесии.

В соответствии с принципом суперпозиции на заряд действует каждый заряд независимо от остальных. Поэтому заряд Q1 будетнаходиться в равновесии, если векторная сумма действующих на него сил равна нулю:

F1+F3+F4=F+F4=0,  (1)

 где F2, F3, F4 — силы, с которыми соответственно действуют на заряд Q1 заряды Q2, Q3 и Q4; F — равнодействующая сил F2 и F3.

Так как силы F и F4 направлены по одной прямой, то векторное равенство (1) можно заменить скалярной суммой:

F—F4=0, или F4=F.

Выразив в последнем равенстве F через F2 и F3 и учитывая, что F3=F2, получим

.

Применяя закон Кулона и имея в виду, что Q2=Q3=Q1, найдем

,  (2)

откуда

.

Из геометрических построений в равностороннем треугольнике следует, что

.

С учетом этого формула (2) примет вид

.

Подставив сюда значение Q1, получим

Q4=0,58 нКл.

Отметим, что равновесие системы зарядов будет неустойчивым.

*Равновесие называется устойчивым, если при малом смещении заряда от положения равновесия возникают силы, возвращающие его в положение равновесия.

** Рекомендуется читателю самостоятельно выполнять решение задаче для отрицательного заряда.

На участке I (рис. 13.2, а) на заряд Q1 действуют две противоположно направленные силы: F1 и F2. Сила F1, действующая со стороны заряда 9Q, в любой точке этого участка будет больше, чем сила F2, действующая со стороны заряда -Q, так как больший (по модулю) заряд 9Q всегда находится ближе к заряду Q1, чем меньший заряд -Q. Поэтому равновесие на этом участке невозможно;

Решение. Закон Кулона позволяет вычислить силу взаимодействия точечных зарядов. По условию задачи, один из зарядов не является точечным, а представляет собой заряд, равномерно распределенный по длине стержня. Однако если выделить на стержне дифференциально малый участок длиной dl, то находящийся на нем заряд dQ=tdl можно рассматривать как точечный и тогда по закону Кулона* сила взаимодействия между зарядами Q1 и dQ:

13.3. Два одинаковых заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол a. Шарики погружаются в масло плотностью p0=8×102 кг/м3. Определить диэлектрическую проницаемость e масла, если угол расхождения нитей при погружении шариков в масло остается неизменным. Плотность материала шариков р=1,6×103 кг/м3.

13.4. Даны два шарика массой m=l г каждый. Какой заряд Q нужно сообщить каждому шарику, чтобы сила взаимного отталкивания зарядов уравновесила силу взаимного притяжения шариков по закону тяготения Ньютона? Рассматривать шарики как материальные точки.

13.5. В элементарной теории атома водорода принимают, что электрон обращается вокруг ядра по круговой орбите. Определить скорость v электрона, если радиус орбиты r=53 пм, а также частоту n вращения электрона.

Взаимодействие точечного заряда

с зарядом, равномерно распределенным

13.14. Тонкий стержень длиной l=10 см равномерно заряжен. Линейная плотность t заряда равна 1 мкКл/м. На продолжении оси стержня на расстоянии а=20 см от ближайшего его конца находится точечный заряд Q=100 нКл. Определить силу F взаимодействия заряженного стержня и точечного заряда.

13.15. Тонкий длинный стержень равномерно заряжен с линейной плотностью t заряда, равной 10 мкКл/м. На продолжении оси стержня на расстоянии а=20 см от его конца находится точечный заряд Q=10 нКл. Определить силу F взаимодействия заряженного стержня и точечного заряда.

Напряженность электрического поля.

Электрическое смещение

Основные формулы

· Напряженность электрического поля

E=F/Q,

где F — сила, действующая на точечный положительный заряд Q, помещенный в данную точку поля.

Напряженность электрического поля, создаваемого металлической сферой радиусом R, несущей заряд Q, на расстоянии r от центра сферы:

а) внутри сферы (r<.R)

E=0;

б) на поверхности сферы (r=R)

;

в) вне сферы (r>R)

.

· Принцип суперпозиции (наложения) электрических полей, согласно которому напряженность Е результирующего поля, созданного двумя (и более) точечными зарядами, равна векторной (геометрической) сумме напряженностей складываемых полей:

· Поток вектора электрического смещения выражается аналогично потоку вектора напряженности электрического поля:

а) в случае однородного поля поток сквозь плоскую поверхность

;

б) в случае неоднородного поля и произвольной поверхности

,

Решение. Согласно принципу суперпозиции электрических полей, каждый заряд создает поле независимо от присутствия в пространстве других зарядов. Поэтому напряженность Е электрического поля в искомой точке может быть найдена как векторная сумма напряженностей E1 и Е2 полей, создаваемых каждым зарядом в отдельности: E=E1+E2.

Напряженности электрического поля, создаваемого в вакууме первым и вторым зарядами, соответственно равны

  (1)

Плоскости делят все пространство на три области: I, II и III. Как вид но из рисунка, в первой и третьей областях электрические силовые линии обоих полей направлены в одну сторону и, следовательно, напряженности суммарных полей Е(I) и E(III) в первой и третьей областях равны между собой и равны сумме напряженностей полей, создаваемых первой и второй плоскостями: Е(I)= E(III)=E1+E2, или

Е(I)= E(III)=.

Во второй области (между плоскостями) электрические силовые линии полей направлены в противоположные стороны и, следовательно, напряженность поля E(II) равна разности напряженностей полей, создаваемых первой и второй плоскостями: E(II)=|E1-E2|, или

.

Поле, создаваемое бесконечной заряженной линией, неоднородно. Его напряженность зависит от расстояния и определяется по формуле

 . (3)

Согласно принципу суперпозиции электрических полей, напряженность поля в точке, где находится заряд Q, равна векторной сумме напряженностей E1 и Е2 (рис. 14.5): E=E1+E2. Так как векторы E1 и Е2 взаимно перпендикулярны, то

.

Как известно, напряженность поля бесконечно длинного равномерно заряженного цилиндра

E=t/(2pe0r),  (2)

где t — линейная плотность заряда.

Выразим линейную плотность t через поверхностную плотность s. Для этого выделим элемент цилиндра длиной l и выразим находящийся на нем заряд Q1 двумя, способами:

Q1=sS=s2pRl и Q1=tl.

Приравняв правые части этих равенств, получим tl=2pRls. После сокращения на l найдем t=2pRs. С учетом этого формула (2) примет вид E=Rs/(e0r). Подставив это выражение Е в формулу (1), найдем искомую силу:

F=QsR/(e0r). (3)

Так как R и r входят в формулу в виде отношения, то они могут быть выражены в любых, но только одинаковых единицах.

Выполнив вычисления по формуле (3), найдем

Пример 7. Две концентрические проводящие сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=l нКл и Q2= –0,5 нКл. Найти напряженность Е поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см r3=15см. Построить график Е(r).

Решение. Заметим, что точки, в которых требуется найти напряженности электрического поля, лежат в трех областях (рис. 14.7): область I (r<R1), область II (R1<r2<R2), область III (r3>R2).

Пример 8. По графику зависимости ускорения от времени установите скорость в момент времени 15 с, если в момент времени 1 с скорость равна 3 м/с.

Анализ и решение: Для удобства решения задачи обозначим точки, соответствующие временам t = 2, 5, 9, 12, 15 секунд соответственно А В С Д Е. Каждый участок зависимости рассмотрим отдельно.

На участке ОА тело двигалось равномерно (без ускорения) и в конце 2-ой секунды (в т. A) будет иметь скорость =3 м/с. На участках АВ и СД тело двигалось с переменным ускорением. Но, как видно из рисунка, ускорение на этих участках изменяется линейно с течением времени – на участке АВ оно растет, на участке СД оно (ускорение) уменьшается. Поэтому на участках АВ и СД можно считать движение равноускоренным с ускорением, найденным как среднеарифметическое, т.е.

30 м/с2.

Принимая движение на участке АВ эквивалентным равноускоренному, вычислим скорость  в конце 5-ой секунды, используя формулу:

,

где t – время движения на участке АВ, t = 3 с

93 м/с.

На участке ВС тело двигалось равноускоренно, с а = 60 м/с2, поэтому скорость υС в конце 9-ой секунды равно:

.

На участке СД скорость рассчитывается та же, как и на участке АВ с учетом ускорения:

.

На участке ДЕ тело двигалось без ускорения (равномерно), значит скорость его не изменилась к концу 15-ой секунды.

Ответ: υЕ = 423 м/с.


На сайте diego74.ru изготовление наружной рекламы.
Закон Кулона решение задач