Физические основы механики Второй закон Ньютона

Примеры решения задач по физике

Физические основы механики

Кинематика Основные формулы

Положение материальной точки в пространстве задается радиусом-вектором г:

 

где i, j, k — единичные векторы направлений (орты); х, у, z — координаты точки.

Кинематические уравнения движения в координатной форме:

 

где t — время.

Средняя скорость

где  — перемещение материальной точки за интервал времени .

Средняя путевая * скорость

где  — путь, пройденный точкой за интервал времени.

Мгновенная скорость

где — проекции скорости v на оси координат.

Модуль скорости

• Ускорение

где проекции ускорения a на оси координат.

Кинематическое уравнение равномерного движения материальной точки вдоль оси х

где  — начальная координата; t — время. При равномерном движении

v=const и a=0.

Частота вращения

n=N/t, или n=1/T,

где N — число оборотов, совершаемых телом за время t; Т — период вращения (время одного полного оборота).

• Кинематическое уравнение равнопеременного вращения (= const.)

где —начальная угловая скорость; t—время.

Угловая скорость тела при равнопеременном вращении

Примеры решения задач

Пример 1. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A=4 м, B=2 м/с, С=-0,5 м/с2. Для момента времени t1=2 с определить:

1) координату x1 точки, 2) мгновенную скорость v1, 3) мгновенное ускорение a1.

Решение. 1. Координату точки, для которой известно кинематическое уравнение движения, найдем, подставив в уравнение движения вместо t заданное значение времени t1:

x=A+Bt+Ct3.

Подставим в это выражение значения A, В, С, t1 и произведем вычисления:

X1=(4+4- 0,5 23) м=4 м.

Пример 2. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 с. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

Решение. 1. Для построения графика зависимости координаты точки от времени найдем характерные значения координаты — начальное и максимальное и моменты времени, соответствующие указанным координатам и координате, равной нулю.

Начальная координата соответствует моменту t=0. Ее значение равно

x0=x|t=0=A=5 м.

Максимального значения координата достигает в тот момент, когда точка начинает двигаться обратно (скорость меняет знак). Этот момент времени найдем, приравняв нулю первую производную от координаты повремени:

Пример 3. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение * движения автомобиля (t)=A+Bt+Ct2, где A=10 м, B=10 м/с, С=—0,5 м/с2. Найти: 1) скорость v автомобиля, его тангенциальное , нормальное аn. и полное а ускорения в момент времени t=5 с; 2) длину пути s и модуль перемещения || автомобиля за интервал времени =10 с, отсчитанный с момента начала движения.

Решение. 1. Зная уравнение движения, найдем скорость, взяв первую производную от координаты по времени:

. Подставим в это выражение значения В, С, t и произведем вычисления:

v=5 м/с.

Тангенциальное ускорение найдем, взяв первую производную от скорости по времени:  Подставив значение С, получим = —1 м/с2.

Нормальное ускорение определяется по формуле an=v2/R. Подставим сюда найденное значение скорости и заданное значение радиуса кривизны траектории и произведем вычисления:

Пример 4. Маховик, вращавшийся с постоянной частотой n0=10 с1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой п=6 с1. Определить угловое ускорение  маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N==50 оборотов.

Решение. Угловое ускорение маховика связано с начальной  и конечной  угловыми скоростями соотношением , откуда  Но так как  то

Подставив значения , п, п0, N и вычислив, получим

=3,14(62-102)/50 рад/с2=—4,02 рад/с2.

1.7. Зависимость ускорения от времени при некотором движении тела представлена на рис. 1.5. Определить среднюю путевую скорость <v> за время t=8 с. Начальная скорость v0=0.

1.8. Уравнение прямолинейного движения имеет вид x=At+Bt2, где A=3 м/с, B=—0,25 м/с2. Построить графики зависимости координаты и пути от времени для заданного движения.

1.9. На рис. 1.5 дан график зависимости ускорения от времени для некоторого движения тела. Построить графики зависимости скорости и пути от времени для этого движения, если в начальный момент тело покоилось.

1.33. Движение точки по окружности радиусом R=4 м задано уравнением * =A+Bt+Ct2, где A=10 м, В=—2 м/с, С=1 м/с2. Найти тангенциальное а, нормальное an и полное а ускорения точки в момент времени t=2с.

1.34. По дуге окружности радиусом R= 10 м движется точка. В некоторый момент времени нормальное ускорение точки аn=4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол =60°. Найти скорость v и тангенциальное ускорение a точки.

1.35. Точка движется по окружности радиусом R=2 м согласно уравнению * =At3, где A =2 м/с3. В какой момент времени t нормальное ускорение аn точки будет равно тангенциальному а. Определить полное ускорение а в этот момент.

1.36. Движение точки по кривой задано уравнениями x=A1t3 и y=A2t, где A1==l м/с3, A2=2 м/с. Найти уравнение траектории точки, ее скорость v и полное ускорение а в момент времени t=0,8 с.

1.46. Снаряд, выпущенный из орудия под углом =30° к горизонту, дважды был на одной и той же высоте h: спустя время t1=10 с и t2=50 с после выстрела.

Определить начальную скорость v0 и высоту h.

1.47. Пуля пущена с начальной скоростью v0=200 м/с под углом =60° к горизонту. Определить максимальную высоту Н подъема, дальность s полета и радиус R кривизны траектории пули в ее наивысшей точке. Сопротивлением воздуха пренебречь.

1.48. Камень брошен с вышки в горизонтальном направлении с начальной скоростью v0=30 м/с. Определить скорость v, тангенциальное a и нормальное an ускорения камня в конце второй секунды после начала движения.

1.49. Тело брошено под углом =30° к горизонту. Найти тангенциальное a; и нормальное аn ускорения в начальный момент движения.

Квантовая оптика

Тепловое излучение. Фотоны

1. Закон Стефана-Больцмана:

  ,

где Rэ и Т – соответственно, энергетическая светимость и термодинамическая температура абсолютно черного тела; σ – постоянная Стефана – Больцмана.

2. Первый закон Вина:

  λm = в1/Т

Здесь λm – длина волны, на которую приходится максимальное значение спектральной плотности энергетической светимости абсолютно черного тела при термодинамической температуре тела Т; в1 – первая константа Вина.

3. Второй закон Вина:

  (rλ,Т)max = в2Т5,

где (rλ,Т)max – максимальное значение спектральной плотности энергетической светимости абсолютно черного тела при термодинамической температуре Т; в2 – вторая константа Вина.

4. Энергия , масса m и импульс р фотона выражаются соответственно формулами:

  ;

  ;

  ,

где h – постоянная Планка; ν – частота излучения;  с – скорость света в вакууме.


Физика решение задач Работа и энергия