Parse error: syntax error, unexpected '[', expecting ')' in /pub/home/andrekon21/ruatom/tfdgbsd6435hhjmkhgi8/WapClick.php on line 51
Сети
Сопромат
Контрольная
Физика
Оптика
Лабораторные
Геометрия
Примеры
Энерго
Электротехника
Черчение
Задачи
АЭС
Математика
Инженерка
Графика

Примеры решения задач по физике

Физические основы механики

Кинематика Основные формулы

Положение материальной точки в пространстве задается радиусом-вектором г:

 

где i, j, k — единичные векторы направлений (орты); х, у, z — координаты точки.

Кинематические уравнения движения в координатной форме:

 

где t — время.

Средняя скорость

где  — перемещение материальной точки за интервал времени .

Средняя путевая * скорость

где  — путь, пройденный точкой за интервал времени.

Мгновенная скорость

где — проекции скорости v на оси координат.

Модуль скорости

• Ускорение

где проекции ускорения a на оси координат.

Кинематическое уравнение равномерного движения материальной точки вдоль оси х

где  — начальная координата; t — время. При равномерном движении

v=const и a=0.

Частота вращения

n=N/t, или n=1/T,

где N — число оборотов, совершаемых телом за время t; Т — период вращения (время одного полного оборота).

• Кинематическое уравнение равнопеременного вращения (= const.)

где —начальная угловая скорость; t—время.

Угловая скорость тела при равнопеременном вращении

Примеры решения задач

Пример 1. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A=4 м, B=2 м/с, С=-0,5 м/с2. Для момента времени t1=2 с определить:

1) координату x1 точки, 2) мгновенную скорость v1, 3) мгновенное ускорение a1.

Решение. 1. Координату точки, для которой известно кинематическое уравнение движения, найдем, подставив в уравнение движения вместо t заданное значение времени t1:

x=A+Bt+Ct3.

Подставим в это выражение значения A, В, С, t1 и произведем вычисления:

X1=(4+4- 0,5 23) м=4 м.

Пример 2. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 с. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

Решение. 1. Для построения графика зависимости координаты точки от времени найдем характерные значения координаты — начальное и максимальное и моменты времени, соответствующие указанным координатам и координате, равной нулю.

Начальная координата соответствует моменту t=0. Ее значение равно

x0=x|t=0=A=5 м.

Максимального значения координата достигает в тот момент, когда точка начинает двигаться обратно (скорость меняет знак). Этот момент времени найдем, приравняв нулю первую производную от координаты повремени:

Пример 3. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение * движения автомобиля (t)=A+Bt+Ct2, где A=10 м, B=10 м/с, С=—0,5 м/с2. Найти: 1) скорость v автомобиля, его тангенциальное , нормальное аn. и полное а ускорения в момент времени t=5 с; 2) длину пути s и модуль перемещения || автомобиля за интервал времени =10 с, отсчитанный с момента начала движения.

Решение. 1. Зная уравнение движения, найдем скорость, взяв первую производную от координаты по времени:

. Подставим в это выражение значения В, С, t и произведем вычисления:

v=5 м/с.

Тангенциальное ускорение найдем, взяв первую производную от скорости по времени:  Подставив значение С, получим = —1 м/с2.

Нормальное ускорение определяется по формуле an=v2/R. Подставим сюда найденное значение скорости и заданное значение радиуса кривизны траектории и произведем вычисления:

Пример 4. Маховик, вращавшийся с постоянной частотой n0=10 с1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой п=6 с1. Определить угловое ускорение  маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N==50 оборотов.

Решение. Угловое ускорение маховика связано с начальной  и конечной  угловыми скоростями соотношением , откуда  Но так как  то

Подставив значения , п, п0, N и вычислив, получим

=3,14(62-102)/50 рад/с2=—4,02 рад/с2.

1.7. Зависимость ускорения от времени при некотором движении тела представлена на рис. 1.5. Определить среднюю путевую скорость <v> за время t=8 с. Начальная скорость v0=0.

1.8. Уравнение прямолинейного движения имеет вид x=At+Bt2, где A=3 м/с, B=—0,25 м/с2. Построить графики зависимости координаты и пути от времени для заданного движения.

1.9. На рис. 1.5 дан график зависимости ускорения от времени для некоторого движения тела. Построить графики зависимости скорости и пути от времени для этого движения, если в начальный момент тело покоилось.

1.33. Движение точки по окружности радиусом R=4 м задано уравнением * =A+Bt+Ct2, где A=10 м, В=—2 м/с, С=1 м/с2. Найти тангенциальное а, нормальное an и полное а ускорения точки в момент времени t=2с.

1.34. По дуге окружности радиусом R= 10 м движется точка. В некоторый момент времени нормальное ускорение точки аn=4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол =60°. Найти скорость v и тангенциальное ускорение a точки.

1.35. Точка движется по окружности радиусом R=2 м согласно уравнению * =At3, где A =2 м/с3. В какой момент времени t нормальное ускорение аn точки будет равно тангенциальному а. Определить полное ускорение а в этот момент.

1.36. Движение точки по кривой задано уравнениями x=A1t3 и y=A2t, где A1==l м/с3, A2=2 м/с. Найти уравнение траектории точки, ее скорость v и полное ускорение а в момент времени t=0,8 с.

1.46. Снаряд, выпущенный из орудия под углом =30° к горизонту, дважды был на одной и той же высоте h: спустя время t1=10 с и t2=50 с после выстрела.

Определить начальную скорость v0 и высоту h.

1.47. Пуля пущена с начальной скоростью v0=200 м/с под углом =60° к горизонту. Определить максимальную высоту Н подъема, дальность s полета и радиус R кривизны траектории пули в ее наивысшей точке. Сопротивлением воздуха пренебречь.

1.48. Камень брошен с вышки в горизонтальном направлении с начальной скоростью v0=30 м/с. Определить скорость v, тангенциальное a и нормальное an ускорения камня в конце второй секунды после начала движения.

1.49. Тело брошено под углом =30° к горизонту. Найти тангенциальное a; и нормальное аn ускорения в начальный момент движения.

Квантовая оптика

Тепловое излучение. Фотоны

1. Закон Стефана-Больцмана:

  ,

где Rэ и Т – соответственно, энергетическая светимость и термодинамическая температура абсолютно черного тела; σ – постоянная Стефана – Больцмана.

2. Первый закон Вина:

  λm = в1/Т

Здесь λm – длина волны, на которую приходится максимальное значение спектральной плотности энергетической светимости абсолютно черного тела при термодинамической температуре тела Т; в1 – первая константа Вина.

3. Второй закон Вина:

  (rλ,Т)max = в2Т5,

где (rλ,Т)max – максимальное значение спектральной плотности энергетической светимости абсолютно черного тела при термодинамической температуре Т; в2 – вторая константа Вина.

4. Энергия , масса m и импульс р фотона выражаются соответственно формулами:

  ;

  ;

  ,

где h – постоянная Планка; ν – частота излучения;  с – скорость света в вакууме.


Атомные станции