Качественное исследование видимой части спектра Элементы земного магнетизма Законы сохранения в механике Интерференция света Естественный и поляризованный свет Оптическая пирометрия Полярные и неполярные диэлектрики

Физика лабораторные работы

ИЗУЧЕНИЕ ДВИЖЕНИЯ МАЯТНИКА МАКСВЕЛЛА

 ЦЕЛЬ РАБОТЫ: ознакомление со сложным движением твердого тела, совершающего вращательное движение одновременно с поступательным перемещением на примере движения маятника Максвелла. Экспериментальное определение момента инерции маятника и сопоставление его с теоретически рассчитанным значением.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: 1) измерительная установка, включающая маятник Максвелла, миллиметровую шкалу, электронный миллисекундомер; 2) штангенциркуль; 3) микрометр.

ТЕОРИЯ МЕТОДА

 Маятник Максвелла состоит из насаженного на металлическую ось диска, на который могут одеваться сменные кольца. К концам оси прикреплены две нити, которые могут наматываться на ось, что позволяет поднимать маятник на различную высоту. При освобождении маятник под действием силы тяжести начинает двигаться поступательно вниз с одновременным вращением вокруг оси симметрии. Когда маятник опустится до низшей точки (нити размотаны до полной длины), вращение по инерции приводит вновь к наматыванию нити на ось и подъему маятника, затем он снова опускается и т.д. Таким образом, маятник Максвелла будет совершать колебательное движение вверх и вниз.

Для определения момента инерции I маятника из опыта воспользуемся законом сохранения энергии. В верхнем положении маятник обладает потенциальной энергией  (здесь m – масса маятника Максвелла, h – длина маятника, равная высоте, на которую он поднимается, g – ускорение свободного падения).

При опускании маятника его потенциальная энергия уменьшается, переходя в кинетическую энергию поступательного и вращательного движения. Из закона сохранения энергии следует:

 (1)

где V – линейная скорость движения маятника в низшей точке падения,

ω – угловая скорость вращения маятника.

Линейная и угловая скорости связаны соотношением:

 (2)

где R – радиус осевого стержня маятника.

Поскольку под действием постоянной силы тяжести маятник движется равноускоренно без начальной скорости, то путь, проходимый им до низшей точки падения и линейная скорость зависят от времени падения следующим образом:

 (3)

Отсюда найдем:

 (4)

Решая систему уравнений (1), (2) и (4) относительно I и заменяя радиус R диаметром DO осевого стержня, найдем момент инерции маятника Максвелла:

 (5)

Основание установки 1 (рис.1) оснащено регулируемыми ножками 2, которые позволяют производить выравнивание прибора. В основании закреплена колонка 3, к которой прикреплен неподвижный верхний кронштейн 4 и подвижный нижний кронштейн 5. На верхнем кронштейне находятся электромагнит 8, первый фотоэлектрический датчик положения 7 и вороток 6 для закрепления и регулирования длины бифилярной подвески маятника. Нижний кронштейн, вместе с прикрепленным к нему вторым фотоэлектрическим датчиком 9, можно перемещать вдоль колонки и фиксировать в произвольно избранном положении.

На маятник 10, который закреплен на оси и подвешен по бифилярному способу, надеваются сменные кольца 11.

Маятник с одним из сменных колец удерживается в верхнем положении электромагнитом. Длина маятника определяется по миллиметровой шкале на колонке прибора. С целью облегчения ее измерения нижний кронштейн оснащен указателем, совмещенным по высоте с оптической осью нижнего фотоэлектрического датчика. Фотоэлектрические датчики 7 и 9 подключены к миллисекундомеру 12.

На внешней панели миллисекундомера расположены:

выключатель сети, нажатием клавиши которого включается напряжение питания и начинает светиться цифра нуль на табло отсчета времени;

клавиша "СБРОС", нажатие которой вызывает сброс показания миллисекундомера;

клавиша "ПУСК", управляющая электромагнитом, нажатие которой освобождает электромагнит и генерирует в схеме миллисекундомера импульс начала измерения времени.

ИЗМЕРЕНИЯ И ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ

1. Проверить горизонтальное положение основания 1 прибора и при необходимости произвести выравнивание регулируемыми ножками 2.

2. Надеть на диск 10 сменное кольцо 11.

3. Проверить, не упирается ли маятник в нижний кронштейн (между ними должен быть зазор примерно в 1 см).

4. Включить прибор в сеть 220 В, нажать на передней панели кнопку "СЕТЬ".

5. Нажать на клавишу "СБРОС".

6. Осторожно намотать нити, виток к витку, на осевой стержень от концов оси к диску так, чтобы диск с кольцом прижимался к щечкам электромагнита. Проверить удерживает ли электромагнит диск, затем повернуть диск на ~ 5° в направлении движения.

Точность эксперимента существенно зависит от того, насколько аккуратно прижат диск к щечкам электромагнита: если сильно провернуть ось с. диском, то нить растянется, и силы упругости нити вместе с силами трения удержат диск в верхнем положении даже при отключенном электромагните.

7. Нажать клавишу "ПУСК". Маятник начнет падать, одновременно включается секундомер, который отключается сразу же, как только диск прервет нижний световой луч. Записать время падения t. Отжать клавишу "ПУСК".

8. Повторить измерение времени падения не менее 3 раз. Найти среднее значение по формуле:

где n – число измерений, ti – результат i - го измерения.

9. Не менее 2-х раз измерить диаметр DО осевого стержня маятника с помощью микрометра, внешние диаметры диска DД и кольца DК с помощью штангенциркуля (не снимая маятника с установки). Найти среднее значение.

10. Измерить по миллиметровой шкале на колонке прибора длину маятника h. Она равна расстоянию между нижней точкой маятника в исходном положении (нулевой отметкой шкалы) и точкой пересечения светового луча маятником в нижнем положении (указателем нижнего кронштейна).

11. Подсчитать момент инерции маятника с кольцом по формуле 5, где масса маятника . Масса осевого стержня т. масса mО, масса диска mД, масса кольца mK указаны на установке.

12. Рассчитать теоретическое значение момента инерции маятника по формуле:

 (6)

где  – момент инерции осевого стержня маятника, (7)

 – момент инерции диска,  (8)

 – момент инерции кольца.  (9)

13. Оценить относительную ошибку определения момента инерции маятника по формуле:

 (10)

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как формулируется закон сохранения механической энергии?

2. Как движется маятник Максвелла под действием силы тяжести?

3. Что называется моментом инерции тела, в каких единицах он измеряется?

4. Выведите формулу (5) для определения момента инерции маятника Максвелла.

ЛАБОРАТОРНАЯ РАБОТА 110

ВВЕДЕНИЕ

Колебаниями называются процессы, в той или иной степени повторяющиеся во времени. При периодических колебаниях изменение наблюдаемой величины в точности повторяется через совершенно определенное время - период. Они описываются периодической функцией времени

 (1)

где Т – период функции, n – произвольное целое число.

Колебание будет полным, если за кратчайшее время система полностью повторит свое движение. Время Т, в течение которого совершается одно полное колебание, является периодом колебания. Число полных колебаний в единицу времени называется частотой колебаний.

(Гц-герц) (2)

Система, выведенная из положения равновесия и предоставленная самой себе, совершает свободные ( или собственные ) колебания. Если при этом энергия системы не изменяется, то ее колебания будут собственными незатухающими. Колебания с уменьшающейся энергией называются свободными затухающими. Колебания, совершаемые системой под воздействием внешней периодически изменяющейся силы, называются вынужденными.

Среди разнообразных колебаний, встречающихся в природе, основную и очень важную роль играют гармонические колебания (рис.1) представляют периодический процесс, в котором изменение наблюдаемой величины описывается функцией синуса ( или косинуса ):

 или   (3)

Здесь Х – отклонение ( смещение ) механической системы от положения равновесия. Наибольшее смещение А называется амплитудой колебаний. Аргумент синуса или косинуса (ωt + φ) определяет смещение в любой момент времени и называется фазой колебаний; φ – начальная фаза ( в момент t = 0). Величина ω, равная числу колебаний за 2π единиц времени, называется циклической ( или круговой) частотой. Она в 2π раз больше обычной частоты ν:

 или рад×с-1 (4)

Амплитуда А и начальная фаза φ определяются начальными условиями, т.е. смещением Х0 и скоростью V0 в момент времени t = 0.

Система, совершающая гармонические колебания, называется гармоническим осциллятором. Для описания его колебаний составляют дифференциальное уравнение движения и, решая его, находят закон этих колебаний – зависимость смещения от времени.

Рассмотрим несколько простейших систем, совершающих гармонические колебания.

Пружинный маятник – тело массой m, способное совершать колебания под действием силы абсолютно упругой невесомой пружины (рис.2).

При смещении тела на расстояние Х от положения равновесия на него действует сила упругости пружины, направленная к положению равновесия:

F = - kX (5)

где k – коэффициент упругости (жесткость) пружины. Уравнение второго закона Ньютона для тела имеет вид

 mX = - kX или  (6)

где  – ускорение тела, равное второй производной смещения по времени).

 Обозначив положительную величину k/m через ω20, получим

 (7)

Следовательно, движение тела под действием упругой силы описывается линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами без первой производной. Уравнение вида (7) называется уравнением гармонических колебаний. Общее решение уравнения (7)

X = A Cos(ω0t + φ) (8)

является законом гармонического колебательного движения с собственной частотой

 (9)

и периодом колебаний

. (10)

Таким образом, для того чтобы тело совершало гармонические колебания, действующая на него сила должна быть пропорциональна величине смещения тела и направлена в сторону, противоположную этому смещению. Если сила не является по своей природе упругой, но подчиняется закону (5), то ее называют “квазиупругой силой” (как бы упругой).

Физический маятник – это твердое тело, способное совершать колебания под действием своей силы тяжести вокруг неподвижной горизонтальной оси подвеса, не проходящей через центр тяжести (масс) тела (рис.3).

 При отклонении маятника от положения равновесия на угол φ возникает вращательный момент М, стремящийся вернуть его в положение равновесия:

М = - mga Sinφ,

где m – масса маятника, g – ускорение свободного падения, а – расстояние между точкой подвеса 0 и центром тяжести С.

Основной закон динамики вращательного движения в применении к физическому маятнику запишется в виде:

J = mga Sin φ, (11)

где J – момент инерции физического маятника относительно оси вращения 0, – угловое ускорение.

При малых угловых отклонениях Sin φ ≈ φ (в радианах) формула (11) переходит в уже известное нам уравнение гармонического колебания

. (12)

В данном случае круговая частота колебаний физического маятника выражается формулой

 (13)

а период колебаний

 (14)

3. Математический маятник – материальная точка, подвешенная на идеально гибкой, невесомой, нерастяжимой нити и способная совершать колебания в вертикальной плоскости под действием силы тяжести. Математический маятник представляет собой предельный случай физического маятника, вся масса которого сосредоточена в его центре масс, так что а = l – длина математического маятника, а J = ml2. Соответственно, круговая частота и период колебаний математического маятника равны

 (15)

Малые колебания рассмотренных маятников являются примерами изохронных колебаний, т.е. колебаний, частоты и периоды которых не зависят от амплитуды.

В общем случае период колебаний зависит от амплитуды, например, решив уравнение (2) для физического маятника, можно найти:

, (16)

где -наибольший угол отклонения от положения равновесия.

Из уравнений (14) и (15) следует, что математический маятник с длиной

L =  (17)

будет иметь такой период колебаний, как и данный физический маятник. Величину (17) называют приведенной длиной физического маятника.

Точка на прямой (см. рис.3), соединяющий точку подвеса с центром масс, лежащая на расстоянии L от оси вращения 0, называется центром качания физического маятника.

По теореме Штейнера момент инерции маятника J может быть представлен в виде , (18)

где J0 – момент инерции относительно оси, параллельной оси вращения и проходящей через центр масс маятника. Подставив (18) в формулу (17), получим:

, (19)

Следовательно, точка подвеса 0 и центр качания лежат по разные стороны от центра масс С. Точка подвеса и центр качания обладают свойством взаимности:при переносе точки подвеса в центр качания прежняя точка подвеса становится новым центром качания, т.е. приведенная длина и период колебаний маятника останутся прежними. Для доказательства этого утверждения достаточно, очевидно, показать равенство приведенных длин L =  для двух положений маятника. Действительно, по формуле(19) имеем

 и ,

Из рис.3 следует:. Подставив это выражение в формулу для, найдем новую приведенную длину

и, следовательно, =Т.

На этом свойстве основано определение ускорения свободного падения с помощью так называемого оборотного маятника, в котором путем перераспределения масс можно добиться взаимности между двумя асимметричными точками подвеса относительно центра масс. Тогда при подвешивании за любую из этих двух точек подвеса период колебаний будет одинаков, а расстояние между точками будет равно L Измерив период колебаний маятника и зная L, можно по формуле

найти ускорение свободного падения g.

ЗАТУХАЮЩИЕ КОЛЕБАНИЯ

В реальных колебательных системах кроме квазиупругих сил присутствуют силы сопротивления среды. Наличие сил трения приводит к рассеянию (диссипации) энергии и уменьшению амплитуды колебаний. Замедляя движение, силы трения увеличивают период, т.е. уменьшает частоту колебаний. Такие колебания не будут гармоническими.

Колебания с непрерывно уменьшающейся во времени амплитудой вследствие рассеяния энергии называются затухающими. При достаточно малых скоростях сила трения пропорциональна скорости тела и направлена против движения

, (20)

где r – коэффициент трения, зависящий от свойств среды, формы и размеров движущегося тела. Дифференциальное уравнение затухающих колебаний при наличии сил трения будет иметь вид

 или  (21)

где  - коэффициент затухания, - собственная круговая частота свободных колебаний при отсутствии сил трения.

Общим решением уравнения (21) в случае малых затуханий () является

. (22)

Оно отличается от чисто гармонического (8) тем, что амплитуда колебаний

 (23)

является убывающей функцией времени, а круговая частота  связана с собственной частотой   и коэффициентом затухания   соотношением

. (24)

Период затухающих колебаний равен

. (25)

Зависимость смещения Х от t затухающих колебаний представлена на рис.4.

Cтепень убывания амплитуды определяется коэффициентом затухания . За время амплитуда (23) уменьшается в е ≈ 2,72 раз. Это время  естественного затухания называют временем релаксации. Следовательно, коэффициент затухания есть величина, обратная времени релаксации

 .(26)

Скорость уменьшения амплитуды колебаний характеризуется логарифмическим декрементом затухания . Пусть А(t) и А(t+T) – амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на один период. Тогда отношение

 (27)

называется декрементом затухания, который показывает, во сколько раз уменьшается амплитуда колебаний за время, равное периоду. Натуральный логарифм этого отношения

 (28)

называется логарифмическим декрементом затухания. Здесь, Ne – число колебаний, совершаемых за время уменьшения амплитуды в е раз, т.е. за время релаксации.

Таким образом, логарифмический декремент затухания есть величина, обратная числу колебаний, по прошествии которых амплитуда колебаний уменьшается в е раз.

Скорость уменьшения энергии колебательной системы характеризуется добротностью Q. Добротностью колебательной системы называется величина, пропорциональная отношению полной энергии Е(t) колебательной системы к энергии (-Е), теряемой за период Т:

 (29)

Полная энергия колебательной системы в произвольный момент времени и при любом значении Х имеет вид

 (30)

Так как энергия пропорциональна квадрату амплитуды, энергия затухающих колебаний уменьшается пропорционально величине , можно написать

. (31)

Тогда, согласно определению, выражение для добротности колебательной системы будет иметь вид

. (32)

Здесь учтено, что при малых затуханиях (l<<1):  1-е-2l ~ 2l.

Следовательно, добротность пропорциональна числу колебаний Ne, совершаемых системой за время релаксации.

Добротность колебательных систем может сильно различаться, например, добротность физического маятника Q ~ 102, а добротность атома, который тоже является колебательной системой, достигает Q ~ 108.

В заключение отметим, что при коэффициенте затухания β=ω0 период становится бесконечным Т =∞ (критическое затухание). При дальнейшем увеличении β период Т становится мнимым, а затухание движения происходит без колебаний, как говорят, апериодически. Этот случай движения изображен на рис.5. Критическое затухание (успокоение) происходит за минимальное время и имеет важное значение в измерительных приборах , например, в баллистических гальванометрах.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ И РЕЗОНАНС

 Если на тело с массой m действуют упругая сила Fу = -kX, сила трения и внешняя периодическая сила , то оно совершает вынужденные колебания. В этом случае дифференциальное уравнение движения имеет вид

 , или, (33)

где, - коэффициент затухания, - собственная частота свободных незатухающих колебаний тела, F0 – амплитуда, ω – частота периодической силы.

 В начальный момент времени работа внешней силы превосходит энергию, которая расходуется на трение (рис. 6). Энергия и амплитуда колебаний тела будет возрастать до тех

пор, пока вся сообщаемая внешней силой энергия не будет целиком расходоваться на преодоление трения, которое пропорционально скорости. Поэтому устанавливается равновесие, при котором сумма кинетической и потенциальной энергии оказывается постоянной. Это условие характеризует стационарное состояние системы.

 В таком состоянии движение тела будет гармоническим с частотой, равной частоте внешнего возбуждения, но вследствие инерции тела его колебания будут сдвинуты по фазе по отношению к мгновенному значению внешней периодической силы:

X = AСos(ωt + φ).  (34)

 В отличие от свободных колебаний амплитуда А и фаза j вынужденных колебаний

зависят не от начальных условий движения, а будут определяться только свойствами колеблющейся системы, амплитудой и частотой вынуждающей силы:

 , (35)

 . (36)

 Видно, что амплитуда и сдвиг по фазе зависят от частоты вынуждающей силы (рис.7 и 8).

Характерной особенностью вынужденных колебаний является наличие резонанса. Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте свободных незатухающих колебаний тела ω0 носит название механического резонанса. Амплитуда колебаний тела при резонансной частоте достигает максимального значения:


  (37)

 По поводу резонансных кривых (см. рис. 7) сделаем следующие замечания. Если ω→ 0, то все кривые (см. также (35)) приходят к одному и тому же, отличному от нуля, предельному значению , так называемому статистическому отклонению. Если ω→ ∞, то все кривые асимптотически стремятся к нулю.

 При условии малого затухания (β2 ‹‹ω02) резонансная амплитуда (см.(37))

  (37а)

 При этом условии возьмем отношение резонансного смещения к статическому отклонению.

,

из которого видно, что относительное увеличение амплитуды колебаний при резонансе определяется добротностью колебательной системы. Здесь добротность является по сути коэффициентом усиления отклика системы и при малом затухании может достигать больших значений.

 Это обстоятельство обусловливает огромное значение явления резонанса в физике и технике. Его используют, если хотят усилить колебания, например, в акустике – для усиления звучания музыкальных инструментов, в радиотехнике – для выделения нужного сигнала из множества других, отличающихся по частоте. Если резонанс может привести к нежелательному росту колебаний, пользуются системой с малой добротностью.

СВЯЗАННЫЕ КОЛЕБАНИЯ

 Источником внешней периодической силы может служить вторая колебательная система, упруго связанная с первой. Обе колебательные системы могут действовать одна на другую. Так, например, случай двух связанных маятников (рис. 9).

 Система может совершать как синфазные (рис. 9б), так и противофазные (рис. 9с) колебания. Такие колебания называются нормальным типом или нормальной модой колебаний и характеризуются своей собственной нормальной частотой. При синфазных колебаниях смещения маятников во все моменты времени Х1 = Х2, а частота ω1 точно такая же, как частота отдельно взятого маятника . Это объясняется тем, что легкая пружина находится в свободном состоянии и не оказывает никакого влияния на движение. При противофазных колебаниях во все моменты времени – Х1 = Х2. Частота таких колебаний больше и равна , так как пружина, обладающая жесткостью k и осуществляющая связь, все время находится то в растянутом, то в сжатом состоянии.


Любое состояние нашей связанной системы, в том числе и начальное смещение Х (рис. 9а), можно представить в виде суперпозиции двух нормальных мод:

  и .

Если привести систему в движение из начального состояния Х1 = 0, ,  Х2 = 2А, ,

то смещения маятников будут описываться выражениями:

 ,

 (38)

 На рис. 10 представлено изменение смещения отдельных маятников во времени.

Частота колебаний маятников равна средней частоте двух нормальных мод

  (39)

а их амплитуда изменяется по закону синуса или конуса с меньшей частотой, равной половине разности частоты нормальных мод

 . (40)

 Медленное изменение амплитуды с частотой, равной половине разности частот нормальных мод, называется “биениями” двух колебаний с почти одинаковыми частотами. Частота “биений” равна разности ω1 –ω2 частот, (а не половине этой разности), поскольку максимум амплитуды 2А достигается дважды за период, соответствующий частоте

Отсюда период биений оказывается равным

  (41)

 При биениях между маятниками происходит обмен энергией. Однако полный обмен энергией возможен только тогда, когда обе массы одинаковы и отношение (ω1+ω2 / ω1-ω2) равно целому числу. Необходимо отметить один важный момент: хотя отдельные маятники могут обмениваться энергией, обмен энергией между нормальными модами отсутствует.

 Наличие таких колеблющихся систем, которые взаимодействуют между собой и способны передавать друг другу свою энергию, составляют основу волнового движения.

ВОЛНЫ

 Колеблющееся материальное тело, помещенное в упругую среду, увлекает за собой и приводит в колебательное движение прилегающие к нему частицы среды. Благодаря наличию упругих связей между частицами колебания распространяются с характерной для данной среды скоростью по всей среде.

 Процесс распространения колебаний в упругой среде называется волной. Различают два основных типа волн: продольные и поперечные. В продольных волнах частицы среды колеблются вдоль направления распространения волны, а в поперечных – перпендикулярно к направлению распространения волны. Не во всякой упругой среде возможно распространение поперечной волны. Поперечная упругая волна возможна лишь в таких средах, в которых имеет место упругая деформация сдвига. Например, в газах и жидкостях распространяются только продольные упругие волны (звук).

 Геометрическое место точек среды, до которых к данному моменту времени дошло колебание, называется фронтом волны. Фронт волны отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникали. В зависимости от формы фронта различают волны плоские, сферические, цилиндрические и т.д.

Уравнение плоской волны, распространяющейся без потерь в однородной среде, имеет вид

 , (42)

где ξ(Х,t) – смещение частиц среды с координатой Х от положения равновесия в момент времени t, А – амплитуда,  - фаза волны,  - круговая частота колебания частиц среды, v – скорость распространения волны.

 Длиной волны λ называется расстояние между точками, колеблющимися с разностью фаз 2π, другими словами, длиной волны называется путь, проходимый любой фазой волны за один период колебаний:

 λ = vT, (43)

фазовая скорость, т.е. скорость распространения данной фазы:

 λ / Т (44)

 Волновое число – число длин волн, укладывающихся на длине 2π единиц:

 k = ω / v = 2π / λ. (45)

Подставляя эти обозначения в (42), уравнение плоской бегущей монохроматической волны можно представить в виде

(46)

Отметим, что уравнение волны (46) обнаруживает двойную периодичность по координате и времени. Действительно, фазы колебаний совпадают при изменении координаты на λ и при

 изменении времени на Т (период). Поэтому изобразить графически волну на плоскости нельзя. Часто фиксируют время t и на графике представляют зависимость смещения ξ от координаты Х, т.е. мгновенное распределение смещений частиц среды вдоль направления распространения волны (рис.11). Разность фаз Δφ колебаний точек среды зависит от расстояния ΔХ =Х2 – Х1 между этими точками

  (47)

 Если волна распространяется противоположно направлению Х, то уравнение обратной волны запишется в виде:

 ξ (Х,t) = АСos(ωt + kX). (48)

 СТОЯЧИЕ ВОЛНЫ – это результат особого вида интерференции волн. Они образуются при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

 Уравнения двух плоских волн, распространяющихся вдоль оси Х в противоположных направлениях, имеют вид:

ξ1 =АСos(ωt – kX)

 ξ2 = AСos(ωt + kX). (49)

Складывая эти уравнения по формуле суммы косинусов и учитывая, что k = 2π / λ, получим уравнение стоячей волны

 . (50)

Множитель Сos ωt показывает, что в точках среды возникает колебание той же частоты ω с амплитудой , зависящей от координаты Х рассматриваемой точки. В точках среды, где

 , (51)

амплитуда колебаний достигает максимального значения, равного 2А. Эти точки называются пучностями. Из выражения (51) можно найти координаты пучностей:

  (52)

В точках, где , (53)

амплитуда колебаний обращается в нуль. Эти точки называются узлами. Координаты узлов

  . (54)

Расстояния между соседними пучностями и соседними узлами одинаковы и равны λ/2. Расстояние между узлом и соседней пучностью равно λ / 4. При переходе через узел множитель  меняет знак, поэтому фазы колебаний по разные стороны от узла отличаются на π, т.е. точки, лежащие по разные стороны от узла, колеблются в противофазе. Точки, заключенные между двумя соседними узлами, колеблются с разными амплитудами, но с одинаковыми фазами.

 Распределение узлов и пучностей в стоячей волне зависит от условий, имеющих место на границе раздела двух сред, от которой происходит отражение. Если отражение волны происходит от среды более плотной, то фаза колебаний в месте отражения волны меняется на противоположную или, как говорят, теряется половина волны. Поэтому, в результате сложения колебаний противоположных направлений смещение на границе равно нулю, т.е. имеет место узел (рис. 12). При отражении волны от границы менее плотной среды фаза колебаний в месте отражения остается без изменения и у границы складываются колебания с одинаковыми фазами – получается пучность.

 В стоячей волне нет перемещения фаз, нет распространения волны, нет переноса энергии, с чем и связано название такого типа волн.

 (28)

называется логарифмическим декрементом затухания. Здесь, Ne – число колебаний, совершаемых за время уменьшения амплитуды в е раз, т.е. за время релаксации.

Таким образом, логарифмический декремент затухания есть величина, обратная числу колебаний, по прошествии которых амплитуда колебаний уменьшается в е раз.

Скорость уменьшения энергии колебательной системы характеризуется добротностью Q. Добротностью колебательной системы называется величина, пропорциональная отношению полной энергии Е(t) колебательной системы к энергии (-Е), теряемой за период Т:

 (29)

Полная энергия колебательной системы в произвольный момент времени и при любом значении Х имеет вид

 (30)

Так как энергия пропорциональна квадрату амплитуды, энергия затухающих колебаний уменьшается пропорционально величине , можно написать

. (31)

Тогда, согласно определению, выражение для добротности колебательной системы будет иметь вид

. (32)

Здесь учтено, что при малых затуханиях (l<<1):  1-е-2l ~ 2l.

Следовательно, добротность пропорциональна числу колебаний Ne, совершаемых системой за время релаксации.

Добротность колебательных систем может сильно различаться, например, добротность физического маятника Q ~ 102, а добротность атома, который тоже является колебательной системой, достигает Q ~ 108.

В заключение отметим, что при коэффициенте затухания β=ω0 период становится

бесконечным Т =∞ (критическое затухание). При дальнейшем увеличении β период Т становится мнимым, а затухание движения происходит без колебаний, как говорят, апериодически. Этот случай движения изображен на рис.5. Критическое затухание (успокоение) происходит за минимальное время и имеет важное значение в измерительных приборах , например, в баллистических гальванометрах.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ И РЕЗОНАНС

 Если на тело с массой m действуют упругая сила Fу = -kX, сила трения и внешняя периодическая сила , то оно совершает вынужденные колебания. В этом случае дифференциальное уравнение движения имеет вид

 , или, (33)

где, - коэффициент затухания, - собственная частота свободных незатухающих колебаний тела, F0 – амплитуда, ω – частота периодической силы.

 В начальный момент времени работа внешней силы превосходит энергию, которая расходуется на трение (рис. 6). Энергия и амплитуда колебаний тела будет возрастать до тех

пор, пока вся сообщаемая внешней силой энергия не будет целиком расходоваться на преодоление трения, которое пропорционально скорости. Поэтому устанавливается равновесие, при котором сумма кинетической и потенциальной энергии оказывается постоянной. Это условие характеризует стационарное состояние системы.

 В таком состоянии движение тела будет гармоническим с частотой, равной частоте внешнего возбуждения, но вследствие инерции тела его колебания будут сдвинуты по фазе по отношению к мгновенному значению внешней периодической силы:

X = AСos(ωt + φ).  (34)

 В отличие от свободных колебаний амплитуда А и фаза j вынужденных колебаний

зависят не от начальных условий движения, а будут определяться только свойствами колеблющейся системы, амплитудой и частотой вынуждающей силы:


, (35)

 . (36)

 Видно, что амплитуда и сдвиг по фазе зависят от частоты вынуждающей силы (рис.7 и 8).

Характерной особенностью вынужденных колебаний является наличие резонанса. Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте свободных незатухающих колебаний тела ω0 носит название механического резонанса. Амплитуда колебаний тела при резонансной частоте достигает максимального значения:

  (37)

 По поводу резонансных кривых (см. рис. 7) сделаем следующие замечания. Если ω→ 0, то все кривые (см. также (35)) приходят к одному и тому же, отличному от нуля, предельному значению , так называемому статистическому отклонению. Если ω→ ∞, то все кривые асимптотически стремятся к нулю.

 При условии малого затухания (β2 ‹‹ω02) резонансная амплитуда (см.(37))

  (37а)

 При этом условии возьмем отношение резонансного смещения к статическому отклонению.

,

из которого видно, что относительное увеличение амплитуды колебаний при резонансе определяется добротностью колебательной системы. Здесь добротность является по сути коэффициентом усиления отклика системы и при малом затухании может достигать больших значений.

 Это обстоятельство обусловливает огромное значение явления резонанса в физике и технике. Его используют, если хотят усилить колебания, например, в акустике – для усиления звучания музыкальных инструментов, в радиотехнике – для выделения нужного сигнала из множества других, отличающихся по частоте. Если резонанс может привести к нежелательному росту колебаний, пользуются системой с малой добротностью.

СВЯЗАННЫЕ КОЛЕБАНИЯ


Источником внешней периодической силы может служить вторая колебательная система, упруго связанная с первой. Обе колебательные системы могут действовать одна на другую. Так, например, случай двух связанных маятников (рис. 9).

 Система может совершать как синфазные (рис. 9б), так и противофазные (рис. 9с) колебания. Такие колебания называются нормальным типом или нормальной модой колебаний и характеризуются своей собственной нормальной частотой. При синфазных колебаниях смещения маятников во все моменты времени Х1 = Х2, а частота ω1 точно такая же, как частота отдельно взятого маятника . Это объясняется тем, что легкая пружина находится в свободном состоянии и не оказывает никакого влияния на движение. При противофазных колебаниях во все моменты времени – Х1 = Х2. Частота таких колебаний больше и равна , так как пружина, обладающая жесткостью k и осуществляющая связь, все время находится то в растянутом, то в сжатом состоянии.

 Любое состояние нашей связанной системы, в том числе и начальное смещение Х (рис. 9а), можно представить в виде суперпозиции двух нормальных мод:

  и .

Если привести систему в движение из начального состояния Х1 = 0, ,  Х2 = 2А, ,

то смещения маятников будут описываться выражениями:

 ,

 (38)

 На рис. 10 представлено изменение смещения отдельных маятников во времени.

Частота колебаний маятников равна средней частоте двух нормальных мод

  (39)

а их амплитуда изменяется по закону синуса или конуса с меньшей частотой, равной половине разности частоты нормальных мод

 . (40)

 Медленное изменение амплитуды с частотой, равной половине разности частот нормальных мод, называется “биениями” двух колебаний с почти одинаковыми частотами. Частота “биений” равна разности ω1 –ω2 частот, (а не половине этой разности), поскольку максимум амплитуды 2А достигается дважды за период, соответствующий частоте

Отсюда период биений оказывается равным

  (41)

 При биениях между маятниками происходит обмен энергией. Однако полный обмен энергией возможен только тогда, когда обе массы одинаковы и отношение (ω1+ω2 / ω1-ω2) равно целому числу. Необходимо отметить один важный момент: хотя отдельные маятники могут обмениваться энергией, обмен энергией между нормальными модами отсутствует.

 Наличие таких колеблющихся систем, которые взаимодействуют между собой и способны передавать друг другу свою энергию, составляют основу волнового движения.

ВОЛНЫ

 Колеблющееся материальное тело, помещенное в упругую среду, увлекает за собой и приводит в колебательное движение прилегающие к нему частицы среды. Благодаря наличию упругих связей между частицами колебания распространяются с характерной для данной среды скоростью по всей среде.

 Процесс распространения колебаний в упругой среде называется волной. Различают два основных типа волн: продольные и поперечные. В продольных волнах частицы среды колеблются вдоль направления распространения волны, а в поперечных – перпендикулярно к направлению распространения волны. Не во всякой упругой среде возможно распространение поперечной волны. Поперечная упругая волна возможна лишь в таких средах, в которых имеет место упругая деформация сдвига. Например, в газах и жидкостях распространяются только продольные упругие волны (звук).

 Геометрическое место точек среды, до которых к данному моменту времени дошло колебание, называется фронтом волны. Фронт волны отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникали. В зависимости от формы фронта различают волны плоские, сферические, цилиндрические и т.д.

 Уравнение плоской волны, распространяющейся без потерь в однородной среде, имеет вид

 , (42)

где ξ(Х,t) – смещение частиц среды с координатой Х от положения равновесия в момент времени t, А – амплитуда,  - фаза волны,  - круговая частота колебания частиц среды, v – скорость распространения волны.

 Длиной волны λ называется расстояние между точками, колеблющимися с разностью фаз 2π, другими словами, длиной волны называется путь, проходимый любой фазой волны за один период колебаний:

 λ = vT, (43)

фазовая скорость, т.е. скорость распространения данной фазы:

 λ / Т (44)

 Волновое число – число длин волн, укладывающихся на длине 2π единиц:

 k = ω / v = 2π / λ. (45)

Подставляя эти обозначения в (42), уравнение плоской бегущей монохроматической волны можно представить в виде

  (46)

Отметим, что уравнение волны (46) обнаруживает двойную периодичность по координате и времени. Действительно, фазы колебаний совпадают при изменении координаты на λ и при

 изменении времени на Т (период). Поэтому изобразить графически волну на плоскости нельзя. Часто фиксируют время t и на графике представляют зависимость смещения ξ от координаты Х, т.е. мгновенное распределение смещений частиц среды вдоль направления распространения волны (рис.11). Разность фаз Δφ колебаний точек среды зависит от расстояния ΔХ =Х2 – Х1 между этими точками

  (47)

 Если волна распространяется противоположно направлению Х, то уравнение обратной волны запишется в виде:

 ξ (Х,t) = АСos(ωt + kX). (48)

 СТОЯЧИЕ ВОЛНЫ – это результат особого вида интерференции волн. Они образуются при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

 Уравнения двух плоских волн, распространяющихся вдоль оси Х в противоположных направлениях, имеют вид:

ξ1 =АСos(ωt – kX)

 ξ2 = AСos(ωt + kX). (49)

Складывая эти уравнения по формуле суммы косинусов и учитывая, что k = 2π / λ, получим уравнение стоячей волны

 . (50)

Множитель Сos ωt показывает, что в точках среды возникает колебание той же частоты ω с амплитудой , зависящей от координаты Х рассматриваемой точки. В точках среды, где

 , (51)

амплитуда колебаний достигает максимального значения, равного 2А. Эти точки называются пучностями. Из выражения (51) можно найти координаты пучностей:

  (52)

В точках, где , (53)

амплитуда колебаний обращается в нуль. Эти точки называются узлами. Координаты узлов

  . (54)

Расстояния между соседними пучностями и соседними узлами одинаковы и равны λ/2. Расстояние между узлом и соседней пучностью равно λ / 4. При переходе через узел множитель  меняет знак, поэтому фазы колебаний по разные стороны от узла отличаются на π, т.е. точки, лежащие по разные стороны от узла, колеблются в противофазе. Точки, заключенные между двумя соседними узлами, колеблются с разными амплитудами, но с одинаковыми фазами.

 Распределение узлов и пучностей в стоячей волне зависит от условий, имеющих место на границе раздела двух сред, от которой происходит отражение. Если отражение волны происходит от среды более плотной, то фаза колебаний в месте отражения волны меняется на противоположную или, как говорят, теряется половина волны. Поэтому, в результате сложения колебаний противоположных направлений смещение на границе равно нулю, т.е. имеет место узел (рис. 12). При отражении волны от границы менее плотной среды фаза колебаний в месте отражения остается без изменения и у границы складываются колебания с одинаковыми фазами – получается пучность.

 В стоячей волне нет перемещения фаз, нет распространения волны, нет переноса энергии, с чем и связано название такого типа волн.

Молекулярная физика

в лабораторных работах данного раздела физики учащиеся знакомятся с особенностями процессов, протекающих в молекулярных системах, и осваивают методы определения важнейших параметров, характеризующих жидкое и газообразное состояния вещества. Студентам рекомендуется четко разделять при действии установок стационарные процессы, неравновесные процессы и равновесные состояния.

Лабораторная работа № 2-2

Определение коэффициента вязкости жидкости

и числа Рейнольдса методом падающего

в жидкостИ шарика

Цель работы: исследование характера движения тела в вязкой жидкости.

Оборудование: длинный цилиндрический сосуд с исследуемой жидкостью и с двумя кольцевыми метками, набор шариков, микрометр, секундомер, линейка, термометр.

Введение

Силы, действующие на движущееся в жидкости тело, в значительной степени зависят от свойств жидкости. При безотрывном плавном обтекании тела идеальной жидкостью сила лобового сопротивления равна нулю ("парадокс" Даламбера). Обтекание тела вязкой жидкостью приводит к возникновению пограничного слоя, в котором влияние сил вязкости заметно, отрыву потока за телом и колебаниям потока из–за вихреобразования. В общем случае сила лобового сопротивления такого обтекания обусловлена: 1) касательными силами вязкости к поверхности тела; 2) перепадом давлений из–за отрыва потока; 3) колебаниями давления вследствие вихреобразования за телом. Какая из составляющих дает наибольший вклад в величину силы лобового сопротивления, в первую очередь, определяется значением критерия подобия числом Рейнольдса , где     – плотность жидкости;  – характерная скорость потока;  – характерный размер;  – коэффициент вязкости жидкости. При малых скоростях потока жидкости, а следовательно, при малых числах Рейнольдса, главную роль играют силы вязкого трения. Стокс показал, что при движении тела в форме шара в вязкой жидкости вдали от стенок сосуда и поверхностей других тел сила лобового сопротивления Fc имеет вид

,                                           (1)

где r – радиус шара. Формула Стокса (1) применима при условии Re <<1. Как видно из выражения (1), медленное движение тела в вязкой жидкости может быть использовано для определения величины коэффициента вязкости жидкости. Это осуществляется в установке, представленной на рисунке.

В широкий вертикально расположенный сосуд налита исследуемая жидкость. На сосуде сделаны по объему жидкости две горизонтальные метки, расстояние между которыми l. Метки достаточно далеко отстоят от дна и верхней кромки жидкости. В сосуд опускают металлический шарик массой m и плотностью ρМ с начальной скоростью, равной нулю. Как видно из рисунка, на шарик действуют три силы: сила тяжести, сила лобового сопротивления вязкой жидкости F1 и выталкивающая сила Архимеда F. На начальном участке движение шарика ускоренное. Но так как с увеличением скорости растет сила лобового сопротивления, вскоре сумма всех сил, действующих на шарик, будет равна нулю, и шарик будет падать с постоянной скоростью. Метками и выделяется участок длины l, на котором шарик движется равномерно. Проекция суммы всех сил на вертикальную ось дает выражение 

,

где ,,

uo – скорость равномерного перемещения шарика;  – плотность жидкости.

Таким образом,

.

Отсюда получается выражение для коэффициента вязкости жидкости

Если учесть, что , где – время  равномерного перемещения шарика между метками, то окончательное выражение для вязкости

Условие применимости формулы (2) – Re<<1 (см. выше). Это накладывает ограничения на размеры падающего шарика

                                           (3)

если пренебречь архимедовой силой.


Изучение цепи переменного тока