Инженерная графика примеры решения задач Построить три проекции линии пересечения сложной поверхности Построить сопряжения и уклоны Эскиз детали по сборочному чертежу машиностроительного изделия задача на построение плана здания

 Задача 2. Дано: четырехугольник EBCD и точка А. Требуется: способом замены плоскостей проекций определить расстояние от точки А до плоскости α (Е, В, С, D), построить проекции этого расстояния на исходном эпюре.

 Точки Е, В, С, D для всех вариантов имеют одинаковые координаты: Е (90, 60, 10), В (60, 90, 80), С (10, 60, 80), D (40, 30, 10). Координаты точки А берут из таблицы 3.

 Указания к выполнению задачи 2. Соблюдая правила построения геометрических фигур на замененных плоскостях проекций, необходимо: 1) преобразовать плоскость общего положения α (Е, В, С, D) в плоскость фронтально-проецирующую и построить проекцию точки А. Положение новой плоскости определяет новая ось проекций Х', которая должна располагаться перпендикулярно горизонтальной проекции горизонтали плоскости α (Е, В, С, D); 2) определить расстояние от точки А до заданной плоскости. Оно равно отрезку перпендикуляра АК, опущенного из точки А на плоскость α (Е, В, С, D), выродившуюся на новой фронтальной плоскости проекций в прямую линию; 3) получив основание перпендикуляра (К2'), построить его проекции на исходном чертеже задачи. Так как проекция отрезка A2'K2' перпендикуляра b – натуральная величина отрезка, то, следовательно, его проекция на плоскость П1 будет параллельна оси Х'. Координату Z для построения фронтальной проекции точки К (К2)  следует взять с плоскости проекций П2'.

 Лист 4

 Выполнить две задачи на пересечение многогранных поверхностей и определение натуральной величины сечения многогранника плоскостью. Пример выполнения листа приведен на рисунке 3.

 Основная надпись по форме 4 (рис. 52).

 Задача 1. Дано: прямая четырехгранная пирамида и трехгранная горизонтальная призма. Требуется: вычертить три проекции пирамиды и призмы, построить линию пересечения этих многогранников и определить ее видимость. Для всех вариантов стороны основания пирамиды Р1F1 = К1Е1 = 60 мм; К1Р1 = Е1F1 = 70 мм; высота пирамиды 110 мм; высота вертикальной грани призмы 90 мм; длина всех ребер призмы 140 мм (рис. 3). Угол α равен углу между стороной основания пирамиды КР и фронтальной плоскостью проекций. Величины l, h, a, а также значения координат точек Р и D берут из таблицы 4 в соответствии с номером варианта.

 Указания к выполнению задачи 1. Вычерчивание пирамиды нужно начинать с точки Р, а призмы – с точки D. Основание пирамиды расположено в плоскости П1, ее ребра прямые общего положения, одна из граней призмы – фронтальная плоскость (параллельная П2), две других – профильно-проецирующие, поэтому ребра этих граней на плоскости П3

проецируются в точки. 

 Линия пересечения многогранников определяется по точкам пересечения ребер каждого из них с гранями другого многогранника или построением линий пересечения граней многогранников. Соединяя каждые пары точек одних и тех же граней отрезками прямых, получаем линии пересечения многогранников. Видимыми линиями пересечения многогранников будут те, которые принадлежат их видимым граням. Линия пересечения многогранников строится только с использованием фронтальных и горизонтальных проекций фигур. Профильные проекции фигур применить для проверки правильности определения точек пересечения ребер с гранями и их последовательного соединения.

 Задача 2. Дано: прямая четырехгранная пирамида и одна грань призмы. Требуется: способом плоскопараллельного перемещения определить натуральную величину сечения пирамиды с гранью призмы. Исходные данные берут из таблицы 4.

Рисунок 3 - Образец выполнения листа 4


 Указания к выполнению задачи 2. Для выполнения данной задачи используют результат решения задачи 1, выделяя из него часть линии пересечения, которая относится к указанной для варианта грани по таблице 4. Профильную проекцию пирамиды с заданной секущей гранью призмы принимают за фронтальную проекцию и к ней достраивают горизонтальную проекцию сечения пирамиды гранью по уже имеющейся горизонтальной проекции в задаче 1, но соответственно развернув его в проекционной связи (рис. 3). Так как секущая грань занимает положение проецирующей плоскости, то, для того, чтобы получить натуральную величину сечения, достаточно произвести одно перемещение. Способом плоскопараллельного перемещения проецирующую плоскость грани ставим в положение плоскости уровня (параллельное горизонтальной плоскости проекций).

 При способе плоскопараллельного перемещения все точки фигуры перемещаются в плоскостях, параллельных какой-либо одной плоскости проекций. Поэтому проекции траекторий точек на вторую плоскость проекций представляют собой прямые линии, параллельные оси проекций. Как и при вращении, вокруг осей, перпендикулярных плоскостям проекций, при плоскопараллельном перемещении одна проекция фигуры не меняется ни по величине, ни по форме.

 Лист 5

 Выполнить три задачи на пересечение поверхности плоскостью и прямой. Пример выполнения листа на рисунке 4. Задачи 1 и 2 выполняют в левой части листа, одна под другой, а задачу 3 – в правой части листа.

 Основная надпись по форме 4 (рис. 52).

 Задача 1. Дано: пирамида и прямая l. Требуется: определить точки пересечения прямой l с поверхностью трехгранной пирамиды. Все варианты задач имеют два одинаковых параметра: высоту пирамиды 70 мм и диаметр вспомогательной окружности 60 мм, в которую вписывается треугольное основание произвольного расположения по усмотрению студента. Положение прямой общего положения, которая пересекает пирамиду, устанавливается студентом также самостоятельно.

 Указания к выполнению задачи 1. Чтобы решить задачу, необходимо: 1) заключить прямую во вспомогательную плоскость частного положения (фронтально-проецирующую или горизонтально-проецирующую); 2) построить линию пересечения пирамиды с этой вспомогательной плоскостью; 3) отметить точки пересечения проекций прямой с проекциями линии пересечения; 4) определить видимость.

 Так как плоскость, в которую заключается прямая, частного положения, то одна из проекций фигуры сечения пирамиды совпадает с проекцией секущей плоскости, выродившейся в линию. Вторую проекцию сечения достраивают по точкам фигуры сечения, которые лежат непосредственно на ребрах. Задача может иметь одно из трех решений:

Рисунок 4 - Образец выполнения листа 5

прямая пересекает пирамиду в двух точках, в одной точке (касается) и не пересекает поверхность.

 Задача 2. Дано: основание конуса— окружность диаметра 60 мм, высота конуса 70 мм и прямая l. Требуется: определить точки пересечения прямой l с поверхностью прямого кругового конуса. Положение прямой студент выбирает самостоятельно, учитывая характеристику прямой, указанную в таблице 5.

 Указания к выполнению задачи 2 (рис. 4). Чтобы решить задачу, необходимо выполнить действия, аналогичные перечисленным в указаниях к задаче 1. При этом следует напомнить, что выбирать нужно такие вспомогательные секущие плоскости, которые дают наипростейший контур сечения конуса: окружность и треугольник. Так, например, для задачи 2, помещенной на рисунке 4, вспомогательная секущая плоскость является плоскостью общего положения, которая проходит через вершину конуса и задана двумя пересекающимися прямыми (заданной прямой и произвольной прямой, проходящей через вершину конуса и точку K данной прямой). Такая плоскость дает сечение в виде треугольника. Если через горизонтальную прямую провести горизонтальную плоскость, сечение будет иметь форму окружности. После определения точек пересечения прямой с конусом следует установить видимые отрезки прямой.

 Таблица 5

Номер

варианта

Характеристика прямой l

1

2

3

4

5

6

7

8

9

0

Нисходящая общего положения

Фронтальная под углом к П1 - 450

Горизонтально-проецирующая

Горизонтальная под углом к П2 - 300

Фронтально-проецирующая

Восходящая общего положения

Горизонтальная под углом к П2 - 450

Фронтально-проецирующая

Фронтальная под углом к П1 - 300

Горизонтально-проецирующая


Построить три изображения и аксонометрическую проекции предмета