Машиностроительный чертеж Графическое оформление чертежей Общие сведения о видах проецирования Начертательная геометрия Метод вспомогательных секущих плоскостей Основные метрические задачи

В раздел "Документация" вносят документы, составляющие основной комплект конструкторских документов (при курсовом и дипломном проектировании - сборочный чертеж, чертеж общего вида, схемы, расчетно-пояснительная записка). В разделах "Сборочные единицы" и "Детали" запись изделий осуществляется в порядке возрастания цифр, входящих в их обозначения.

Плоскость, касательная к поверхности

Плоскость, касательная к поверхности в заданной на поверхности точке, есть множество всех прямых — касательных, проведенных к поверхности через заданную точку.

Для задания плоскости, касательной к поверхности в заданной точке, достаточно провести через эту точку две произвольные линии, принадлежащие поверхности (желательно простые по форме), и к каждой их них построить касательные в точке пересечения этих линий. Построенные касательные определяют касательную плоскость.

Задание: построить плоскость Р, касательную к поверхности сферы и проходящую через точку А (рис. 12.5).

 Прямые и плоскости общего положения не параллельны и не перпендикулярны ни к одной из плоскостей проекций. И отличаются тем, что при проецировании их метрические характеристики (расстояния, углы и площади) подвергаются искажению

Решение: плоскость, касательная к сфере, перпендикулярна к радиусу, проведенному в точку касания. Поэтому, проведя радиус ОА, строят плоскость, задавая ее горизонталью АВ и фронталью АС. При этом горизонтальная проекция A1B1 перпендикулярна к A1 O1, а фронтальная проекция А2С2 перпендикулярна к А2О2.

ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ

Предложенные в настоящей работе задания охватывают задачи не на все методы построения линий пересечения поверхностей, а только наиболее распространенные.

Ниже приведены решения типовых задач, когда применены различные способы в зависимости от формы и расположения пересекающихся поверхностей.

Одна из поверхностей занимает частное (проецирующее) положение

Задание: даны две поверхности:  - тора и Р - цилиндра (рис. 13.1). Требуется построить линию их пересечения.

Решение: поверхность цилиндра перпендикулярна к П2, следовательно, она проецирующая. В таком случае фронтальная проекция линии пересечения уже известна. Она совпадает с фронтальной проекцией цилиндра. Решение задачи, т.е. построение горизонтальной проекции линии пересечения, сводится к нахождению второй проекции линии, принадлежащей поверхности . Для достижения этой цели на фронтальной проекции фиксируют опорные (1, 2, 4, 9) и промежуточные точки и находят их положения на горизонтальной проекции (рис. 13.2).

Ниже приводится построение горизонтальной проекции только одной точки 1 (рис. 13.1). Из этой точки вниз проводят линию проекционной связи. Одновременно из этой же точки радиусом 012 проводят дугу окружности, на которой лежит эта точка, как принадлежащая тору, и находят проекцию этой окружности на горизонтальной проекции тора - это прямая линия, параллельная оси x. Она проходит через точку l1 (точка пересечения окружности, проходящей через точку 1, с окружностью тора, лежащей на П1). Горизонтальная проекция точки 1 находится на пересечении линии проекционной связи, проведенной из точки 12, с горизонтальной проекцией окружности тора, на которой лежит точка 1. Остальные точки строят аналогично точке 1 (рис. 13.2).

Точки 4 и 9 определяют видимость линии пересечения на горизонтальной проекции, а точки 1 и 2 наиболее удаленные от контура на горизонтальной проекции.

Эту задачу можно решать и методом вспомогательных секущих плоскостей, который рассматривается в следующем пункте.


Начертательная геометрия Способ секущих концентрических сфер