Машиностроительный чертеж Графическое оформление чертежей Общие сведения о видах проецирования Начертательная геометрия Метод вспомогательных секущих плоскостей Основные метрические задачи

При изображении изделия на сборочном чертеже помимо видов могут применяться разрезы и сечения, поясняющие форму и расположение деталей, входящих и изделие. Таким образом, сборочный чертеж содержит изображение сборочной единицы и другие данные, необходимые для ее сборки (изготовления) и контроля. Чтение сборочного чертежа это процесс определения конструкции, размеров и принципа работы изделия по его чертежу

Проекции плоских фигур

Зная построение проекций прямых и точек, расположенных на плоскости, можно построить проекции любой плоской фигуры, например, прямоугольника, треугольника, круга.

Как известно, каждая плоская фигура ограничена отрезками прямых или кривых линий, которые могут быть построены по точкам. Подобрать из расчета на прочность главную балку междуэтажного перекрытия двутаврового поперечного сечения и проверить условие жесткости для нее

Проекции фигуры, ограниченной прямыми линиями (треугольника и многоугольника), строят по точкам (вершинам). Затем одноименные проекции вершин соединяют прямыми линиями и получают проекции фигур.

Проекции круга или другой криволинейной фигуры строят с помощью нескольких точек, которые берут равномерно по контуру фигуры Блокирующий контур Если производящую поверхность рассечь плоскостью, перпендикулярной оси нарезаемого колеса, то в сечении получим исходный производящий контур (ИПК). Станочное зацепление есть зацепление ИПК с профилем зуба нарезаемого колеса. Рассмотрим реечное станочное зацепление, т. е. такое, когда ИПК имеет очертания зубчатой рейки. Эвольвентные кромки этого ИПК прямолинейны. Режущий инструмент (червячная фреза или гребенка), образующий своим главным движением эвольвентный реечный ИПК, обладает очень ценным свойством: его можно изготовить сравнительно дешево и достаточно точно. Геометрия зубьев нарезаемого колеса определяется параметрами ИПК реечного инструмента и его расположением по отношению к колесу.

Одноименные проекции точек соединяют плавной кривой по лекалу.

Проекции плоской фигуры строят различными способами в зависимости от положения фигуры относительно плоскостей проекций Н и V. Наиболее просто построить проекции фигуры, расположенной параллельно плоскостям Я и V; сложнее — при расположении фигуры на проецирующей плоскости или на плоскости общего положения.

Рассмотрим несколько примеров Если треугольник ABC расположен на плоскости, параллельной плоскости, то горизонтальная проекция этого треугольника будет его действительной величиной, а фронтальная проекция — отрезком прямой, параллельным оси х

Взаимное расположение плоскостей Две плоскости могут быть взаимно параллельными или пересекающимися. Прямая, принадлежащая плоскости Пересечение прямой с плоскостью Если прямая АВ пересекается с плоскостью Р, то на комплексном чертеже точка их пересечения определяется следующим образом. Пересечение плоскостей Задачи на построение линии пересечения плоскостей, заданных пересекающимися прямыми, можно решать подобно задаче на пересечение плоскости с прямыми линиями

Способ граней

Суть способа сводится к последовательному определению линий пересечения двух плоскостей, одна из которых является заданной, а другая - какой-либо гранью многогранника (см. разд. 6). Для построения же самой фигуры сечения определяют точки пресечения найденных прямых, которые являются вершинами многоугольника сечения.

Способ ребер

Этот способ заключается в определении точек встречи прямых (ребер) с заданной плоскостью (см. разд. 7). Установив последовательно для всех ребер точки встречи их с секущей плоскостью, соединяют эти точки отрезками прямых и получают многоугольник сечения.

Развертки многогранников

В инженерном деле многогранники чаще всего реализуются как оболочка заданных форм и размеров. Для их изготовления необходимо уметь выполнить развертку (выкройку) такой оболочки.

Развёртка многогранника представляет собой плоскую фигуру, полученную последовательным совмещением всех граней многогранника с плоскостью чертежа таким образом, чтобы грани примыкали друг к другу по линиям сгиба (рёбрам).

Для построения развёртки многогранника необходимо иметь натуральные величины всех его граней, поэтому задача построения развертки многогранника решается в два этапа:

определяют натуральную величину каждой грани (см. разд. 9);

потом путем вращения вокруг соответствующей линии (ребра) (см. разд. 9) совмещают грани с плоскостью чертежа.


Начертательная геометрия Способ секущих концентрических сфер