Лабораторные работы задачи по электротехнике Методы расчета цепей Задание на курсовую работу Переходные процессы метод контурных токов метод узловых потенциалов метод наложения метод эквивалентного генератора

Синтез активных полосовых фильтров

ARC-фильтры представляют собой комбинацию пассивной RC-цепи и активного элемента. В качестве последнего чаще всего используются операционные усилители часто с двумя входами – инвертирующим и неинвертирующим. В схемах ARC-фильтров обязательно имеется обратная связь. Известно [1, 2], что передаточная функция любой активной цепи с обратной связью записывается как

где Нус(р) и Нос(р) передаточные функции цепи прямого усиления и цепи обратной связи соответственно. Знаменатель Н(р) – это полином, например, второй степени. Корни его, т. е. полюсы Н(р) могут быть в том числе и комплексно-сопряженными. Последнее означает, что ARC-цепь эквивалентна пассивной LC-цепи, а т. к. LC-цепь обладает избирательными свойствами, то и ARC-цепь тоже может обладать избирательными свойствами, т. е. является фильтром.

Синтез ARC-фильтров, как и пассивных LC-фильтров, состоит из двух этапов: этапа аппроксимации и этапа реализации. Этап аппроксимации в обоих случаях одинаков. Этап реализации для ARC-фильтров – отличается от LC-реализации.

Этап реализации. Вначале осуществляют переход от передаточной функции НЧ-прототипа, которая имеет вид (2.6), к передаточной функции полосового фильтра. Один из возможных вариантов такого перехода основан на использовании формулы пересчета полюсов НЧ-прототипа в полюсы ПФ:

  

где

  – полюсы передаточной функции НЧ-прототипа;

w0 = 2pf0 – находится по (2.1).

Согласно (2.11) одной паре комплексно-сопряженных полюсов нормированной передаточной функции НЧ-прототипа соответствует две пары комплексно-сопряженных полюсов денормированной передаточной функции полосового фильтра. Одному вещественному полюсу (рнч.нор = s + j0) нормированной H(р) НЧ-прототипа (2.6) соответствует одна пара комплексно-сопряженных полюсов вида  денормированной H(р) полосового фильтра. В результате общий порядок ПФ удваивается по сравнению с порядком НЧ-прототипа.

Передаточную функцию ПФ удобно представлять произведением сомножителей второго порядка H1(р), H2(р), H3(р) и т. д. Каждый из этих сомножителей реализуется в виде активного RC-звена второго порядка, а полученные звенья соединяются каскадно, образуя полную схему ПФ. Звенья ARC-фильтров в общем случае являются типовыми (одинаковыми) для фильтров, имеющих одинаковое расположение полосы пропускания на шкале частот.

3. Пример расчета полосового LC-фильтра

Согласно заданию на курсовую работу на входе полосового фильтра действуют периодические радиоимпульсы (рис. 1.1) с параметрами: период следования импульсов Tи = 800 мкс; длительность импульсов tи = 200 мкс; период несущей частоты Tн = 33,3 мкс; амплитуда колебаний несущей частоты Um.н = 5 В. Фильтр должен обеспечить максимально допустимое ослабление в полосе пропускания Аmax = DA = 3 дБ. Полное ослабление на границах полос непропускания Апол = 24,2 дБ. Сопротивления нагрузок фильтра слева и справа Rг = Rн = 1 кОм (рис. 2.2). Характеристика фильтра аппроксимируется полиномом Чебышева.

3.1. Расчет амплитудного спектра
радиоимпульсов

Прежде чем приступать непосредственно к расчету фильтра, необходимо определить частотный состав сигнала, поступающего на вход фильтра, т. е. рассчитать и построить график амплитудного спектра периодических радиоимпульсов, взяв за основу рис. 1.2.

Вначале находится несущая частота:

Затем рассчитывают частоты нулей огибающей спектра. Они зависят от длительности импульса:

Максимальное значение огибающей в виде напряжения, соответствующее частоте fн, находится по формуле

  

Зная максимальное значение и расположение нулей по оси частот, строим огибающую дискретного спектра периодических радиоимпульсов в виде пунктирной кривой в масштабе по оси частот (рис. 1.2).

Внутри огибающей находятся спектральные составляющие или гармоники спектра с частотами fi, где i – номер гармоники. Они располагаются симметрично относительно несущей частоты, зависят от периода следования импульсов и находятся по формуле

.

Учитывая, что

рассчитываем частоты гармоник, лежащих только справа от fн:

Частоты гармоник, лежащих слева от fн, будут:

Амплитуды напряжения i-ых гармоник находятся по формуле

  

где K = tи/Tн – количество периодов несущих колебаний косинусоидальной формы в импульсе. Например, на рис. 1.1 К = 4, а в рассматриваемом примере К = 6.

Из анализа рис. 1.2 видно, что главный «лепесток спектра» занимает диапазон частот от 25 до 35 кГц. Крайние частоты диапазона совпадают с нулями огибающей, поэтому их амплитуды равны нулю, в частности Um.4 = 0, Um.(–4) = 0.

После расчета амплитуд по (3.2) их значения отражаются в виде дискретных составляющих внутри огибающей спектра (рис. 1.2).

Полезно обратить внимание на характерную особенность спектра, связанную с понятием скважности импульсов. Если скважность q, т.е. отношение периода следования импульсов Tи к длительности импульсов tи, равна целому числу, то в спектре отсутствуют гармоники с номерами, кратными скважности. В рассматриваемом примере q = 4, поэтому в спектре будут отсутствовать (совпадать с нулями огибающей) 4, 8, 12 и т.д. гармоники слева и справа от несущей частоты.


Экспериментальная проверка методики расчета линейных электрических цепей