Примеры решения типовых задач Основы векторной алгебры Аналитическая геометрия Пример выполнения контрольной работы матрицы Решение систем линейных уравнений Дифференциальные уравнения Вычислить пределы Криволинейный интеграл

Определенный интеграл

Задача 11. Вычислить площадь фигуры, ограниченной линиями у=х2+4х, у=х+4 (рис. 8).

Решение. Площадь S фигуры, ограниченной сверху и снизу непрерывными линиями у=f(х) и у=(х), пересекающими в точках абсциссами  и , определяется по формуле

 S= (1)

Рис. 8

Для нахождения точек пересечения данных линий решаем систему уравнений

  откуда  

Применяя формулу (1), получим:

=

=20(кв. ед.)

 

Вопросы для самопроверки

1. Назовите задачи, приводящие к понятию определенного интеграла.

2. Напишите интегральную сумму для функции у=f(х) на отрезке .

3. Что называется определенным интегралом от функции у=f(х) на ?

4. Каков геометрический смысл определенного интеграла?

5. Перечислите основные свойства определенного интеграла.

6. Чему равна производная от определенного интеграла с переменным верхним пределом интегрирования?

7. Напишите формулу Ньютона – Лейбница.

8. Напишите формулу интегрирования по частям в определенном интеграле.

9. Как вычислить объем тела, образованного вращением плоской фигуры вокруг оси Ох? оси Оу?

 10. Дайте определение несобственного интеграла с бесконечными пределами интегрирования.

11. Сформулируйте понятие несобственного интеграла от разрывной функции.

Примеры решения типовых задач по математике