Примеры решения типовых задач Основы векторной алгебры Аналитическая геометрия Пример выполнения контрольной работы матрицы Решение систем линейных уравнений Дифференциальные уравнения Вычислить пределы Криволинейный интеграл

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ

Упражнение 1. Найти указанные пределы.

Решение:

 

При подстановке вместо переменно х ее предельного значения 3 получается неопределенность вида . Для избавления от этого типа неопределенности в этом случае представим квадратные трехчлены числителя и знаменателя в виде произведения линейных множителей, воспользовавшись известной формулой , где - корни квадратного трехчлена . У нас , т.к. дискриминант квадратного трехчлена , а следовательно,  .

Аналогично .

Теперь условие примера можно переписать а другом виде и продолжить решение:

.

.

Здесь сталкиваемся с неопределенностью вида , избавиться от которой можно вынесением за скобки в числителе и знаменателе дроби старшей степени переменной: .

.

В данном случае для освобождения от возникшей неопределенности вида будем использовать I замечательный предел и одно из его очевидных следствий:

.

Решение примера будет выглядеть следующим образом:

Упражнение 2. Найти производные, пользуясь правилами и формулами дифференцирования.

Решение:

Кроме формул дифференцирования нужно использовать правила дифференцирования (суммы, разности, произведения, частного).

Необходима и теорема о производной сложной функции:

если задана сложная функция , где , то есть ; если каждая из функций  и  дифференцируема по своему аргументу, то

.

, ,

.

,

Упражнение 3. Исследовать функцию методами дифференциального исчисления и начертить график.

Исследование функции и построение графика рекомендуется проводить по следующей схеме:

найти область определения функции D(y);

найти точки экстремума функции и определить интервалы ее монотонности;

найти точки перегиба графика функции и определить интервалы выпуклости и вогнутости графика функции;

найти асимптоты графика функции;

 построить график, используя результаты предыдущих исследований;

дополнительно найти наибольшее и наименьшее значения на отрезке .

Решение:

Дана функция:

Областью определения данной функции являются все действительные значения аргумента х, то есть D(y): , а это значит, что функция непрерывна на всей числовой прямой и график ее не имеет вертикальных асимптот.

Исследуем функцию на экстремум и интервалы монотонности. С этой целью найдем ее производную и приравняем к нулю:

Решая полученное квадратное уравнение, делаем вывод о том, что функция имеет две критические точки I рода х1 = -5, х2 = -1. Разбиваем область определения этими точками на части и по изменению знака производной в них выявляем промежутки монотонности и наличие экстремума:

x

-5

-1

+

0

-

0

+

&

max

(

min

&

Определим точки перегиба графика функции и интервалы его выпуклости и вогнутости. Для этого найдем II производную заданной функции и приравняем ее к нулю:

, т.е.

Итак, функция имеет одну критическую точку 2 рода . Разобьем область определения полученной точкой на части, в каждой из которой установим знак II производной:

x

-3

-

0

+

т.п.

Значение  является абсциссой точки перегиба графика функции, а ордината этой точки

Выясним наличие у графика заданной функции наклонных асимптот. Для определения параметров уравнения асимптоты  воспользуемся формулами: .

Имеем .

Таким образом, у графика заданной функции наклонных асимптот нет.

Для построения графика в выбранной системе координат изобразим точки максимума А1(-5; 4), минимума А2(-1; -4),  перегиба А3 (-3; 0) и точку пересечения графика с осью Оу А4 (0; ). С учетом результатов предыдущих исследований построим кривую.

Найдем наибольшее и наименьшее значения заданной функции на отрезке   . Для этого посчитаем значения функции на концах этого отрезка, в критических точках I рода, попавших на отрезок, и сравним результаты:

 .

Очевидно, что .

Упражнение 4. Задан закон s(t) изменения пути движения материальной точки; нужно найти значения скорости и ускорения этой точки в момент времени t0.

Решение:

Пусть .

Известно, что значения скорости и ускорения материальной точки в некоторый момент времени являются соответственно значениями в этот момент I и II производных функции, задающей закон изменения пути движения точки.

У нас

(ед. ск.)

(ед. уск.)

Упражнение 5. Найти неопределенные интегралы

а) способом подстановки (методом замена переменной) , ;

б) применяя метод интегрирования по частям , .

Решение:

а) : применим подстановку . Тогда  и

: применим подстановку . Тогда ,

, откуда

б) : применим формулу интегрирования по частям .

Положим . Тогда .

Следовательно, .

: положим . Тогда .

Отсюда . Применяя в последнем интеграле подстановку , получаем , следовательно, .

Отсюда .

Упражнение 6. Вычислить площадь плоской фигуры, ограниченную параболами.

Решение:

Найдем абсциссы точек пересечения заданных парабол. Для этого приравняем правые части их уравнений: .

Решаем полученное квадратное уравнение:

.

Вычисление площади фигуры осуществляем по формуле , где - кривые, ограничивающие фигуру .

В нашем случае (кв. ед.)

Упражнение 7. Найти общее решение (общий интеграл) дифференциального уравнения I порядка .

Решение:

Правая часть уравнения  обладает свойством . Поэтому заданное уравнение является однородным дифференциальным уравнением I порядка. Совершим замену , где - некоторая функция от аргумента х. Отсюда . Исходное уравнение приобретает вид .

Продолжаем преобразования: ; .

Производим разделение переменных: .

После интегрирования обеих частей уравнения получаем

;

.

Таким образом ; .

Потенцируя, находим  или ; .

Итак, общий интеграл исходного уравнения приобретает вид

, где С – произвольная постоянная.

Упражнение 8. Найти частное решение линейного однородного дифференциального уравнения II порядка с постоянными коэффициентами:

а)

б)

в)

Решение:

а) Для заданного дифференциального уравнения составим соответствующее характеристическое уравнение по принципу: . Решаем полученное квадратное уравнение и получаем два вещественных разных корня .

Т.к. , то общее решение данных уравнений записывается в виде . В нашем случае , где - произвольные постоянные.

Отсюда , .

Используя начальные условия : , т.е. .

Из того что  следует , т.е. , .

Решая систему уравнений , получаем .

Теперь в наше общее решение  подставим найденные значения . Частное решение исходного уравнения, удовлетворяющее заданным начальным условиям, приобретает вид .

б) Для заданного дифференциального уравнения составим соответствующее характеристическое уравнение по принципу: . Решаем полученное квадратное уравнение и получаем два равных вещественных корня .

Т.к. , то общее решение данных уравнений записывается в виде . В нашем случае , где - произвольные постоянные.

Отсюда , .

Учитывая начальные условия, получаем систему уравнений для определения : . Решая систему, получаем .

Искомое частное решение имеет вид:

в) Для заданного дифференциального уравнения  составим соответствующее характеристическое уравнение . Решая это уравнение, убеждаем, что оно не имеет вещественных корней.

В этом случае общее решение соответствующего дифференциального уравнения записывается в виде , где  - коэффициенты характеристического уравнения).

У нас  поэтому общее решение заданного дифференциального уравнения имеет вид .

 Отсюда .

Таким образом, для определения значений  исходя из начальных условий, получаем систему уравнений ,

решая которую имеем .

Итак, искомое частное решение приобретает вид

Упражнение 9. Дискретная случайная величина Х имеет только два возможных значения х1 и х2 , причем х1 < х2. Найти закон распределения величины Х, если известно, что математическое ожидание М (х) = 1,4, дисперсия D (х) = 0,24 и вероятность р1 того, что Х примет значение х1, равна 0,6.

Решение:

Так как сумма вероятностей всех возможных значений Х равна 1, то вероятность p2 того, что Х примет значение х2, равна p2 = 1 - p1 = 1 – 0,6 = 0,4.

Напишем закон распределения Х:

Х

х1

х2

p

0,6

0,4

Для отыскания х1 и х2 составим два уравнения.

Для составления первого уравнения воспользуемся тем, что математическое ожидание

M(x) определяется по формуле M(x) = х1 р1 + х2 р2 + … + хn рn

В нашем случае: M(x) = х1 р1 + х2 р2

Учитывая, что по условию M(x) = 1,4, можем записать первое уравнение:

0,6х1 + 0,4х2 = 1,4.

Учитывая, что по условию D(x) = 0,24, пользуясь формулой D (х) = M (X2) – [M(X)]2, напишем второе уравнение:

0,6 х12 + 0,4 х22 - 1,42 = 0,24, или

0,6 х12 + 0,4 х22 = 2,2.

Решив полученную систему уравнений, найдем два решения:

х1 = 1, х2 = 2 и х1 = 1,8, х2 = 0,8.

По условию, х1 < х2, поэтому задаче удовлетворяет лишь первое решение.

Окончательно получим искомый закон распределения:

Х

1

2

p

0,6

0,4

Примеры решения типовых задач по математике