Электрические цепи Закон Ома для участка цепи, содержащего ЭДС Действующее значение синусоидального тока Мощности цепи синусоидального тока Законы Кирхгофа в комплексной форме. Нелинейные цепи постоянного и синусоидального тока

Магнитное поле и магнитные цепи

Ферромагнитные материалы и их магнитные свойства

 По магнитным свойствам все материалы разделяют на две группы: ферромагнитные (железо, кобальт, никель и их сплавы и др.) и неферромагнитные материалы (все материалы, за исключением ферромагнитных). Резонанс токов. Резонансный режим, возникающий при параллельном соединении R, L, C, называется резонансом токов

 Особенностью неферромагнитных материалов является то, что зависимость между магнитной индукцией В и напряженностью магнитного поля Н в них является линейной. Их абсолютная магнитная проницаемость есть величина постоянная и практически равна магнитной постоянной

 (7.1)

 Материалы, магнитная проницаемость которых достигает больших значений и зависит от внешнего магнитного поля и предшествующего состояния, называют ферромагнитными. Свойства ферромагнитных материалов принято характеризовать зависимостью магнитной индукции В от напряженности магнитного поля Н. Если перемагничивать образец в периодическом магнитном поле, то кривая  имеет вид петли, называемой петлей гистерезиса (рис. 7.1). Участок 0а является кривой намагничивания, поскольку поле возникает при нулевом значении индукции. Точки б и д соответствуют остаточной индукции , а напряженность в точках в и е называют задерживающей, или коэрцитивной, силой .

Рис. 7.1

 В зависимости от магнитной проницаемости ферромагнитные материалы разделяют на две группы:

 1) магнитомягкие с большой магнитной проницаемостью и с малой коэрцитивной силой . К ним относят электротехнические стали, пермаллой и ферриты;

2) магнитотвердые с малой магнитной проницаемостью, большой коэрцитивной силой  и большой остаточной индукцией  Тл.

 Магнитотвердые материалы применяют для изготовления постоянных магнитов. К ним относятся углеродистые, вольфрамовые, хромистые и кобальтовые сплавы.

 Ферромагнитные материалы играют важную роль в электротехнике, так как дают возможность при относительно небольших напряженностях получать сильные магнитные поля и конструировать электромагнитные устройства, обладающие заданными характеристиками.

Ферромагнитные магнитопроводы используют во всех электрических машинах, трансформаторах, электромагнитах, реле и др.

Анализ полученного результата позволяет сделать важный вывод: при синусоидальной форме потока напряжение  на катушке синусоидально, а протекающий через нее ток имеет явно выраженную несинусоидальную форму. Аналогично можно показать, что при синусоидальном токе поток, сцепленный с катушкой, и напряжение на ней несинусоидальны.

Для среднего значения напряжения, наведенного потоком, можно записать

.

(2)

Умножив (2) на коэффициент формы, получим выражение для действующего значения напряжения

.

В частности, если напряжение и поток синусоидальны, то

.

Соотношение (2) является весьма важным: измеряя среднее значение напряжения, наведенного потоком, по (2) можно определить амплитуды потока и индукции при любой форме нелинейности катушки.

Аналогично проводится построение кривой  при синусоидальном потоке и задании зависимости  в виде петли гистерезиса. При этом следует помнить, что перемещение рабочей точки по петле осуществляется против часовой стрелки (см. рис. 8).


 



            К полученному результату следует сделать следующий важный комментарий. Разложение построенной кривой  в ряд Фурье показывает, что первая гармоника тока (см. кривую  на рис. 8) опережает по фазе потокосцепление и, следовательно, отстает по фазе от синусоидального напряжения на катушке на угол, меньший 90°. Это указывает ( ) на потребление катушкой активной мощности, затрачиваемой на перемагничивание сердечника и определяемой площадью петли гистерезиса.

Литература

Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с.

Контрольные вопросы и задачи

В чем заключаются особенности нелинейных цепей переменного тока?

Какие типы характеристик используются в цепях переменного тока для описания нелинейных элементов?

В каких случаях допустимо использование при расчетах идеальных ВАХ вентилей?

Почему нельзя потокосцепление рассеяния катушки представить как произведение числа ее витков и потока рассеяния?

Как косвенным путем можно определить амплитуду индукции магнитного поля, сцепленного с катушкой?

Построить кривые  и  при синусоидальном токе в нелинейной катушке.

Почему первая гармоника разложения кривой тока  при учете гистерезисной петли отстает от напряжения на угол, меньший 90°?

Определить амплитуду основного рабочего потока в сердечнике нелинейной катушки сечением , если при числе витков  среднее значение напряжения, обусловленного изменением потока, ; частота .

Ответ: .

Последовательное соединение активного, индуктивного и ёмкостного элементов.

Рассмотрим процессы, происходящие в цепи, содержащей индуктивную катушку с параметрами L, R и конденсатор с параметром С. Схема замещения цепи показана на рисунке.



Для последовательной цепи общим является ток. Согласно второму закону Кирхгофа для мгновенных значений напряжение на входе цепи определяется выражением

u = uR + uL + uC.

Запишем это уравнение в комплексной форме

U = UR + UL + UC.

Представим это уравнение векторной диаграммой, рис. 3.8, а.


Нелинейные цепи переменного тока с ферромагнитными элементами