Волоконно-оптические приборы Мультивибраторы Триггеры Трехфазные выпрямители Магнитное поле и магнитные цепи Электрические цепи Последовательное соединение резистора, катушки и конденсатора

Измерение и контроль сопротивления изоляции. Электрическая изоляция оборудования, находящегося под различными потенциалами (в том числе и по отношению к земле), необходима не только для нормального функционирования оборудования, но и для безопасности обслуживающего персонала. При эксплуатации электрооборудования его изоляция подвергается воздействию различных факторов (особенно в условиях животноводческих помещений, хранилищ сельскохозяйственной продукции, кормоцехов и др.), а также изменению (старению) и повреждению (разрушению). Это требует систематического контроля ее состояния. Сопротивление изоляции оборудования, не находящегося под напряжением, измеряют мегомметром (магнитоэлектрический логометр) с встроенным источником питания.

 Сопротивление изоляции двухпроводной линии можно рассматривать состоящим из двух параллельно соединенных резисторов, распределенных по длине линии. Если двухпроводная линия находится под напряжением, то сопротивление ее изоляции можно контролировать вольтметрами, включенными, как показано на рис. 20.3. Учитывая, что на показания вольтметра, включенного между линией и землей, влияет сопротивление другой линии, и что сопротивление вольтметра меньше сопротивления изоляции, можно записать

 и .

При одинаковом сопротивлении изоляции линий А и В вольтметры показывают одинаковое напряжение, равное напряжению между линиями. Изменение сопротивления изоляции одной из линий вызывает соответствующее изменение показаний вольтметра.

 

 

 

Рис. 20.3

Учет электрической энергии

 Активную и реактивную энергию в однофазных и трехфазных цепях учитывают при помощи интегрирующих индукционных приборов – однофазных и трехфазных счетчиков.

 При включении счетчиков начала последовательных цепей приборов (токовые катушки), обозначаемые буквой Г, включают в разрыв провода, а параллельные цепи (катушки напряжения), начала которых обозначают буквой Н, включают параллельно приемнику энергии. Концы катушек напряжения трехфазных счетчиков обозначают цифрами 1, 2, 3 и 0.

 В однофазных системах активную электрическую энергию учитывают однофазными счетчиками типа СО. Схема включения такого счетчика приведена на рис. 20.4.

 Рис. 20.4

 В трехфазных трехпроводных системах активную энергию учитывают при помощи трехфазных (двухэлементных) счетчиков типа СА3. В трехфазных четырехпроводных системах активную энергию учитывают при помощи трехфазных (трехэлементных) счетчиков типа СА4. В трехфазных (трех- и четырехпроводных) системах реактивную энергию учитывают с помощью трехэлементных счетчиков реактивной энергии типа СР4.

 Трансформаторные подстанции сельских электрических сетей комплектуют трехфазными счетчиками активной и реактивной энергии, включаемыми через измерительные трансформаторы.

Метод  аналитической  аппроксимации

Метод  основан  на  аппроксимации  характеристики  нелинейного  элемента  аналитической  функцией,  которая  должна,  с  одной  стороны,  достаточно  точно  отображать  исходную  нелинейную  характеристику  на  участке  перемещения  рабочей  точки,  а  с  другой  стороны,  обеспечивать  возможность  достаточно  несложного  интегрирования  полученного  дифференциального  уравнения  (в  частности,  с  использованием  табличных  интегралов).

Метод  применим  к  нелинейным  цепям  с  одним  накопителем  энергии,  описываемым  дифференциальными  уравнениями  первого  порядка,  а  также  к  цепям,  описываемым  уравнениями,  сводящимися  к  уравнениям  первого  порядка  путем  замены  переменных.

Ценность  метода  заключается  в  получении  выражения  исследуемой  величины в общем виде, что позволяет  осуществлять  требуемый  анализ  процессов  при  варьировании  параметров  схемы.

В качестве примера использования метода определим ток в схеме на рис. 3, полагая, что характеристика  нелинейной катушки имеет вид типовой кривой на рис. 2.

1. Для  решения  задачи  выберем  выражение  аналитической  аппроксимации  вида .  Определяя  параметр    из  условия  соответствия  данной  функции  точке  установившегося  послекоммутационного  режима,  получим

(4)

где  .

2. Подставив  в  уравнение  переходного  процесса

аналитическое  выражение  тока  с  учетом  (4),  получим

(5)

Разделяя  переменные  и  решая  (5)  относительно  времени,  запишем

(6)

  где  – начальное  значение  потокосцепления,  соответствующее  значению  тока  в  момент  коммутации  .

Выражение  (6)  соответствует  табличному  интегралу;  в результате  получаем

(7)

Подставив  в  последнее  соотношение  выражение  потокосцепления  в  виде

,

перепишем  (7)  как

.

ЗАДАНИЕ N 9
Тема: Характеристические параметры и передаточные функции четырехполюсников
Если известна постоянная передачи γ симметричного четырехполюсника, то его передаточная функция по напряжению 1412_193326/2BF38DFDA9288B34A257EAFAA9361194.png при согласованной нагрузке равна …

Решение:
Для симметричного четырехполюсника при согласованной нагрузке 1412_193326/E78E0921C518E00F8AE2213696E686F2.png Постоянная передачи по напряжению 1412_193326/3D3F5D2491F91131F41A13BAB85A78F2.png


Источники питания электронных устройств